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Abstract

We introduce an e�cient method for recognition and lo-
calization of generic objects for robot navigation, which
works on real scenes. The generic objects used in our ex-
periments are desks and doors as they are suitable land-
marks for navigation. The recognition method uses sig-
ni�cant surfaces and accompanying functional evidence
for recognition of such objects. Currently, our system
works with planar surfaces only and assumes that the
objects are in a \standard" pose. The localization and
orientation of an object are represented with the most
signi�cant surface in an \s-map." Some results for labo-
ratory scenes are given.

1 Introduction

Our goal is to provide visual capabilities for a robot to
navigate in indoor environments such as an o�ce build-
ing. For this, not only must the robot be able to sense
the objects in its environment for the purpose of ob-
stacle detection but also recognize some of them to be
used as landmarks for navigation. One approach to this
task could be to provide a detailed map of the objects
and structures in the environment to the robot. This al-
lows conventional model-based object recognition tech-
niques to be used for landmark detection and path plan-
ning. This strategy, however, has several limitations.
First, the objects and their arrangement in an indoor
setting are constantly changing. Even normally station-
ary objects, such as furniture, may be moved occasion-
ally. Also, providing detailed geometric models for all
objects even in a single room can be a very di�cult and
tedious task. When a common object, such as a desk,
is replaced by another one, completely new models may
have to be provided even if the two objects serve similar
functions.
To overcome these di�culties, we propose to repre-

sent the objects and structures by some generic models.
This enables the objects to be recognized as belonging to
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a certain class without having to also determine which
speci�c one. Such generic modeling allows the robot to
navigate in environments without knowledge of the spe-
ci�c instances or their locations.
An example of a scene that the robot must handle is

shown in Figure 1. The robot may be asked to use a
desk as a landmark and to pass through a door after the
desk. We only wish to provide generic descriptions of
the room and the objects to the robot. A room can be
thus characterized by horizontal doors and vertical walls
that may have doors. The room may consist of objects,
such as desk, whose generic properties are known to the
robot, but also other unknown objects which can not
be used as landmarks but nonetheless must be avoided
during navigation. In this paper, we will focus only on
the recognition of the generic classes.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 1: Door 1

Little research has been done on recognition of generic
classes of objects in computer vision. It is somewhat dif-
�cult to precisely de�ne the notion of a generic class, but
it surely excludes precise geometric models. The most
generic representation of an object is probably in terms
of its functionality. Thus, concept of a door is that of
an opening allowing passage of objects and a means of
closing this opening. The concept of a desk is that of
an object that allows a human to place objects on it
and work on them in a comfortable posture. The infer-
ence of such high level functionality from real images is,
however, quite di�cult. Some attempts have been made
towards this [10], but these systems do not take images
as inputs. In early work, Tenenbaum and Garvey [3, 11]
attempted to recognize objects in an o�ce scene by using
point properties; however, such properties are not su�-
cient to distinguish among complex objects in a complex
scene, in general. Another approach is to view various



Figure 2: Overview of the recognition system

orientation, height, shape, and size. The orientation and
height are used to reduce search space while the shape
and size are utilized for perceptual grouping. Shape of
a signi�cant surface may vary for a generic object. Such
varying shapes can be detected with help of other signi�-
cant surfaces. For example, a round desk top surface can
be detected with help of legs. The details are described
in Section 4.
Localization of an object in our system is represented

in an s-map. The s-map is de�ned as a map that rep-
resents the locations of the visible 3-D surfaces of ob-
stacles in a 2-D space, where 2-D consists of width and
length coordinates but does not include a height coordi-
nate. Obstacles are de�ned as objects that can block the
movement of the robot. The s-map is made e�ciently
from 3-D segments. Further details can be found in [6].
Section 2 explains the signi�cant surface of an object

and its primitives. Perceptual grouping for the signif-
icant surface is also investigated. Section 3 describes
recognizing and localizing doors. Section 4 presents
recognition and localization of desks. Section 5 analyzes
the recognition system. Finally, Section 6 concludes this
paper.

2 Signi�cant surface representation

Signi�cant surfaces follow from the functions that an ob-
ject performs. Note that one surface may serve several
functions whereas a single function may require presence
of several surfaces. For example, for a desk, the function
of being able to work at a comfortable heights requires
a table top within a certain height range as well as some
legs for support.
We order the signi�cant surfaces by how essential they

are to the functions that they enable. For a desk, we
consider the top surface to be more signi�cant than the
legs. For an object to be recognized, its most signi�cant
surface must be detected.

2.1 Primitives of a signi�cant surface

A signi�cant surface in a standard pose can be character-
ized by the four primitives: orientation, range of heights,
shape, and size. The orientation and height are decided
by the standard pose while the shape and size are deter-
mined by the signi�cant surface itself. The orientation



and height can reduce the number of candidate segments
for perceptual grouping to �nd the surface having the
shape and size.

� Orientation: a signi�cant surface of an object has
a �xed orientation relative to a horizontal plane in
standard pose. For example, a desk top is horizon-
tal.

� Range of height: all the points in a signi�cant sur-
face are within a certain range in terms of their
heights above the oor. For example, desk legs have
a height range of between zero and 1 meter above
the oor.

� Shape: shape of a signi�cant surface may be given in
general form. For instance, desk tops generally have
a rectangular shape. However, we may be able to
detect desk with non-rectangular shape also, based
on evidence provided by legs and objects supported
on it.

� Size: size of a signi�cant surface of an object is
within a certain range. For example, a desk top
should have an appropriate size for a human to work
on.

2.2 Perceptual grouping to detect a signi�cant
surface

Perceptual grouping is used to �nd a signi�cant surface
from 2-D and 3-D segments. The candidate segments
can be limited using orientation and height primitives
of the signi�cant surface. Perceptual grouping for the
signi�cant surface varies depending on its shape. Thus
the details of perceptual grouping for each signi�cant
surface are explained in the related sections.
In perceptual grouping, 2-D information as well as

3-D information is utilized. This can reduce grouping
errors caused by matching errors. The loss of informa-
tion caused by missing matches and/or partial matches
may be recovered using 2-D segment information in two
ways. First, missing matches hinder two less meaningful
features from becoming a more meaningful one because
of lost information. Such lost information can be re-
covered if there are 2-D segments that can support the
meaningful feature. For example, a rectangle with a 3-
D U-shape can be classi�ed as a rectangle with higher
con�dence if it has 2-D segments that can make the U-
shape a rectangular shape. Second, partial matches may
prevent two less meaningful features from being grouped
into a more meaningful feature when proximity of two
features is used as one criterion. The partial matches
may lose adjacent portion of two less meaningful fea-
tures, and prevent them from being a more meaningful
feature. This error can be overcome if 2-D segments in
addition to 3-D segments are used in checking the prox-
imity of two features.

3 Recognition of doors

A door has some functions. The most signi�cant func-
tion is for a human and other objects such as furniture
to pass through. This decides the most signi�cant sur-
face, a door frame. Another signi�cant function can be

1. Collect possible top bars

2. Collect left and right poles

3. Hypothesize doors

If there is a top bar
then hypothesize a door with

a top bar, left pole, and right pole.
else hypothesize a door with a left pole

and right pole
if there is a 2-D top bar between them.

4. Verify a door

� 3-D validation with distance and alignment

� 2-D validation with distance

Figure 3: Algorithm for detecting a door frame

separation of space when the door is not used as a pas-
sage. This determines another signi�cant surface, a door
panel. In addition to these signi�cant surfaces, a door
may be supported by functional evidence. The func-
tional evidence consists of objects seen through a door
when it is open. This information helps to decide that
the detected door is not a simple drawing but a real door.
First, detecting a door frame as the most signi�cant

surface is described. Then detecting a door panel as
another signi�cant surface is explained. Next, detecting
functional evidence is explored. Finally, the results of
detecting doors are illustrated.

3.1 Detecting a door frame

A door frame can be characterized by the following four
primitives: a vertical orientation, a height range between
a oor and 2.5 meters above the oor, a rectangular
shape, and passable size. The orientation and height
reduce search space for candidate segments. The shape
and size decide a perceptual grouping method to detect
the door frame from the candidate segments.
A door frame has three components: top bar, left pole,

and right pole. A door frame can be detected by �nding
a U-shape consisting of the top bar, the left pole, and
the right pole.
Candidate segments for top bars, left poles, and right

poles are searched in a limited space as described be-
low. The candidate segments are then grouped into door
frames. The details of collecting candidate segments and
perceptual grouping are described below. In addition,
the algorithm to detect door is summarized in Figure 3.
Candidate segments are e�ciently collected using ori-

entation and size primitives for the three components
described above. The orientation and size con�ne the
search space of the candidate segments to vertical sur-
faces whose height is between a oor and 2.5 meters
above the oor. A top bar should be a horizontal line of
su�cient length and height, so that a human can pass
under the top bar. Poles should be vertical lines that
are high enough for a human to pass, and the distance
between the two poles should be wide enough so that a



human can pass. First, collecting possible top bars are
explained. Collecting possible poles are then explored.
Possible top bars are collected frommatched segments.

A segment can be a possible top bar if it has su�-
cient height and width. While checking the length of
a matched segment, shrunk 3-D segments due to partial
matching can be recovered by considering what portion
of 2-D segments are used in reconstructing the 3-D seg-
ment.
Left and right poles have the same characteristics in

terms of primitives. The poles are also collected among
matched segments. A vertical segment can be a possible
pole if it is high enough.
Now top bars and poles are perceptual grouped into

U-shapes. If top bars of all doors are assumed to be
detected, then hypothesizing doors is relatively simple.
However, the assumption is not always true. Thus miss-
ing a top bar should be considered when hypothesizing
doors.
When a top bar is available, a door is hypothesized

with a left pole, a top bar, and a right pole. The right
pole is in the scope of the top bar. The right pole in
the scope of a top bar is a pole below the top bar in an
image.
When a top bar is unavailable, a door is hypothesized

only with a left pole and a right pole. The right pole
is next pole to the left pole. In addition, the distance
between them is su�cient for a door. The poles should
have a 2-D top bar bridging them. If so, a door is hy-
pothesized with the top bar and two poles.
After hypothesizing a door frame, the door frame is

veri�ed with its 2-D and 3-D information. As a 3-D vali-
dation, distance and alignment are veri�ed. The distance
gap between an end point of a top bar and each pole
should be within a threshold value. Moreover, Three
components of a door frame should be aligned to a sin-
gle line in an s-map because they are aligned to a single
line at the top view. As a 2-D validation, the distance
gap between each end point of a top bar and an up-
per end point of each pole should be within a threshold
value. These veri�cation criteria are also used in select-
ing a door frame among those hypothesized door frames
sharing the same top bar, which can be generated when
a door frame has more than two distinct poles. For ex-
ample, a door frame having two door panels can have
more than two distinct poles if a center pole is detected.

3.2 Detecting a door panel

A door can have several panels. When a door is closed,
it is di�cult to distinguish panels from a door frame.
However, detecting a door panel is easier when a door is
open. The panel is attached to a door frame and has a
rectangular shape. In the current implementation, our
system tries to detect a door panel only when a door is
open. The opening of a door is decided using functional
evidence described in Section 3.3. Detecting a door panel
helps to detect a door.
Detecting a door panel is similar to detecting a door

frame except that the door panel should be attached
to the door frame. Searching for a door panel is done
near two poles of the door. After �nding an horizontal

segment reaching a corner of the door frame, a vertical
line reaching the horizontal segment is found. With this
horizontal line and the vertical line, a door panel is hy-
pothesized. The same veri�cation used in door frame
veri�cation is applied to verify a door panel.

3.3 Finding functional evidence

When a door is open to pass, its opening gives functional
evidence that constitutes objects seen through the open-
ing. Thus detecting objects inside a door helps to detect
the door. To acquire this functional evidence, we collect
segments inside a door frame. Then the segments are
checked if they are behind the door by a minimum dis-
tance set by expected accuracy of depth determination
from the viewpoint of the robot. If so, functional evi-
dence for a door is claimed to be achieved. Moreover,
these segments behind the door mean that the door is
open.
When a door is closed, the functional evidence is not

available.

3.4 Localization of a door

After a door is found, the location of the door is rep-
resented in an s-map for navigation. Representing the
door in an s-map is very simple. A vertical line becomes
a point in an s-map because dropping height information
of the vertical line renders a point. Thus the door in the
s-map is a line linking two points generated from two
vertical poles.
In addition to the location of a door, the facing direc-

tion of a door should be known to the robot so that the
robot is able to reach in front of the door. The facing di-
rection is decided considering locations of both the door
and the robot. At �rst, two locations, which are perpen-
dicular and a prede�ned distance away from a door, are
computed. Then one between the two possible locations
is selected based on the distance between the robot and
one position. The nearer location is selected because see-
ing an object means that the front part is always nearer
than the back part.

3.5 Results for recognition of doors

Figure 3.5-a and 3.5-b illustrate recognition of an open
door for an image scene shown Figure 1. In this scene,
there are two doors. The right door is open because it
has functional evidence of an open door as described in
Section 3.3. The thicker lines in Figure 3.5-a represents
an open door. Moreover, the center position of a door
and the front part of a door are represented with small
circles bridging the thin line in Figure 3.5-b.
The closed door in Figure 1 is also detected, but is not

shown here separately.

4 Recognition of desks

A desk has the following signi�cant surfaces: the desk
top and the legs. The most signi�cant surface of a desk
is the desk top. Less signi�cant surfaces are the legs.
In addition, evidence of a desk may also be found by
detecting the function it performs, namely of supporting
objects on the desk top.



(a) Matches (b) S-map

Figure 4: Open door

4.1 Detecting a desk top surface

The most signi�cant surface for a desk is the top surface.
The primitives for a desk top surface are as follows: hor-
izontal orientation, height range between 60 cm and 90
cm, rectangular shape, and workable size. The size is
assumed to be from 40 cm to 2 meters in each side. The
shape primitive is loosely preserved. Although the sys-
tem tries to detect the rectangular shape, it allows the
desk top to be an arbitrary shape. The desk top is ini-
tially detected using perceptual grouping. Then other
signi�cant surfaces are used to detect the desk top cor-
rectly.
The detection of a desk top using perceptual grouping

can be done in two stages: collecting candidate segments
for a desk top and perceptual grouping for a desk top.
In collecting candidate segments, orientation and height
primitives are used to reduce the search space. Segments
that are both horizontal and 60-90 cm high above the
oor, are collected.
In perceptual grouping, collected candidate segments

are grouped into a rectangular shape having work-
able size. Perceptual grouping is done in four steps:
collinearization, L-shapes, U-shape, and rectangular
shape. In the �rst step, possible desk top segments
are collinearized based on the angle di�erence and the
gap between two segments. The gap can be as large as
the size of a desk because a large part of a desk may
be occluded by materials on the desk. In the second
step, collinearized lines form L-shapes based on angle
and gap between two lines. The angle between two lines
should be perpendicular in 3-D. The gap between two
lines should be within a threshold value. In checking for
a gap, a 2-D gap as well as a 3-D gap is also used to
recover errors caused by partial or wrong matches. In
the third step, L-shapes form U-shapes. Two L-shape
can make a U-shape if they have a common line and the
other lines have the same direction. Moreover, the size
of a U-shape should be large enough to be a desk. In
the �nal step, U-shapes make rectangular shapes. Two
U-shapes can make a rectangular shape if they have two
common lines. The rectangular shape should be large
enough for a human to work on.
The detection of a desk top with help of other signi�-

cant surfaces is done while detecting the other signi�cant
surfaces. The other signi�cant surfaces can con�ne the
domain of the desk top. The details are described in

1. Collect vertical segments

2. Filter those reaching a desk top surface from the
collected segments

3. Select those inside the 2-D domain of a desk from
the �ltered segments.

(a) Find the 2-D domain of a desk with respect to
an s-map

i. Find the 1-D domain for a column coordi-
nate
A. Acquire an initial column domain
B. Collect possible legs inside the initial col-

umn domain
C. Con�ne a more accurate column domain

from the collected possible legs.
D. Collect more possible legs inside the more

accurate column domain
ii. Find the 2-D domain in an s-map
A. Collect the segments inside the column

domain
B. Grow a rectangle containing the collected

segments if they are within a reasonable
range

(b) Select those inside the 2-D domain

Figure 5: Algorithm for detecting legs

Section 4.2.

4.2 Detecting legs

Detecting legs of a desk either adds con�dence to the
desk recognized with a desk top surface, or can help to
detect a desk if a desk top surface is not detected. Miss-
ing a desk top surface occurs when there are no rect-
angular shapes, U-shapes, and L-shapes that are large
enough because of occlusion by material on the top sur-
face, or by material in front of the desk. This missed
top surface may be recovered by detecting legs. While
detecting legs, a domain of a desk top is acquired. The
details are described below.
Legs have four primitives: vertical orientation, height

range between a oor to the desk top surface, no com-
mon shape, and size that does not exceeding the 2-D
desk domain with respect to an s-map. Orientation and
height reduce possible candidates for legs. Then only
size primitive is applied to group the candidates. The
details of detecting legs are described below. In addi-
tion, the algorithm of detecting legs are summarized in
Figure 5.
Detection of the legs of a desk is done in three mod-

ules: collecting vertical segments, �ltering the vertical
segments that can reach desk top height, and selecting
the vertical segments inside a 2-D domain of a desk top.
Collecting vertical segments is done by checking verti-
cality of a segment. The second module is easily im-
plemented by checking 3-D information of vertical seg-
ments. The �nal module needs to �nd the 2-D domain
of a desk with respect to an s-map. After �nding the 2-D



domain of a desk, more possible legs are selected as legs
if they are inside the 2-D domain of a desk. We describe
a method of �nding the 2-D domain of a desk.
Finding the 2-D domain of a desk is done in two steps:

�nding a column coordinate domain of a desk in an im-
age, and �nding the 2-D desk domain in an s-map.
In the �rst step, a column coordinate domain becomes

more accurate when it interacts with legs. The method
attempts to acquire an initial column domain. Then the
acquired column domain is used to collect possible legs.
Next the possible legs con�ne a more accurate column
domain. Finally, the more accurate column domain is
used to collect more possible legs. Among these proce-
dures, we describe acquiring an initial column domain
and con�ning a more accurate column domain because
collecting legs in a column domain can be done simply
by checking column coordinates of a segment.
Initial column domain is acquired either from seg-

ments at a desk height or from a detected desk top sur-
face. The initial column domain should contain all the
segments at desk height or segments of the desk top sur-
face.
Con�ning to a more accurate column domain is done

by using a presence row. The presence row is a single row
indicating if a column coordinate of the row is occupied
by a desk. This presence row is constructed by drop-
ping the row coordinate of possible segments of a desk
top surface and marking its coordinate as a �lled cell.
Thus the region occupied by a desk is marked with �lled
cells. After making the presence row, the extra possible
legs are selected among all the possible legs using the
presence row. In the presence row, a band of continu-
ously �lled cells is considered as a desk if the band is
su�ciently wide. Thus possible legs under such a band
become extra possible legs. Conversely, the band having
extra possible legs can be considered as a desk. There-
fore, such band becomes a column domain of a desk.
In the second step, a 2-D desk domain is computed in

an s-map represented in terms of width and depth. A
segment with desk top height is collected as a possible
desk top segment if it is inside a column domain com-
puted at the �rst step. After collecting possible desk
top segments, a 2-D desk domain is grown by attempt-
ing to contain the desk top segments if they are within
a certain range. The growing of a 2-D desk domain is
described below. In constructing a rectangle containing
the segments of a desk, computation time is reduced by
transforming segments into another coordinate system.
The coordinate system allows checking if a segment is
contained to be easily performed by checking its row and
column coordinates. Among all the segments of a desk
top surface, the longest segment is selected as a reference
segment. Then row and column coordinates are rotated
so that the reference segment is parallel to row coordi-
nate. This reference segment generates a desk rectangle
of which one side is made with the reference segment and
the other parallel side is made with a small perturbation
of the reference segment. Now other segments are also
transformed and their coordinates are compared to see if
they are inside the desk rectangle. If a segment is not in-
side the desk rectangle, the desk rectangle is updated so

that it can contain the segment unless the segment is too
far. Finally, the desk rectangle is inversely transformed
to a world coordinate system.

4.3 Finding functional evidence

The function of a desk, to work on, can generate func-
tional evidence. When some objects are on the desk,
these provide functional evidence. Thus objects on the
desk can help recognize the desk. The objects on the
desk should be inside the 2-D domain of the desk and
reach the desk top.
Detecting materials on a desk top is accomplished in

two steps. In the �rst step, segments inside a 2-D desk
domain are collected. These segments can be e�ciently
collected using 1-D and 2-D �ltering. For a 1-D �ltering,
segments inside the column domain of the desk are col-
lected. Then the collected segments are further checked
if they are inside the 2-D desk domain in an s-map .
In the second step, segments reaching the desk top are
selected among segments inside. In the current system,
segments one or both of whose ends reach the desk top
are considered as segments reaching the desk top.

4.4 Localization of a desk

After a desk is found, localization is done in an s-map.
Location of the desk is simply represented in the s-map
by dropping height information of the four sides of the
top surface.
In addition to location of a desk, the front direction of

the desk should be known to a robot so that the robot
can reach the desk and do some other work, such as
getting a pencil in a drawer. To �nd the front part of
the desk, common posture is utilized. A desk top has a
rectangular shape. Moreover, either of longer sides of the
desk top is a front part of a desk. In common posture,
the front part of a desk faces a direction that is easily
accessible. This implies that the front part of a desk is
nearer than its rear part. Now detecting a front part
becomes detecting the longer side facing a robot. The
detecting of the front part is accomplished in two steps.
At �rst, longer sides of a desk are selected. Then the
nearer side between the longer sides is selected as the
front part. This selection can be further veri�ed when a
robot approaches the desk and acquires more details of
the desk front.

4.5 Results for recognition of desks

Several tens of experiments have been conducted to rec-
ognize four di�erent kinds of desks in many di�erent
viewpoints, distances, and settings. Three of the four
desks have a rectangular desk top, but have di�erent
shaped legs. One of them has drawers in both sides. An-
other has drawers in one side. The other has no drawers.
The desk having a round desk top has only a single leg.
The recognition system has successfully recognized the
four desks in the experiments with settings of a moni-
tor and a chair. The errors in orientation and size were
within 20 percent in experiments done. Results of rec-
ognizing desks are given below.
Figure 6-a shows an image taken by our robot,

Antigone. Detecting signi�cant surfaces and functional



(a) Image (b) Top

(c) Legs (d) Functional evi-
dence

(e) S-map

Figure 6: Desk A

evidence is given in Figure 6-b, 6-c, and 6-d. Fig-
ure 6-b represents a detected desk top surface on top of
matched segments. The thin lines are matched segments.
The thicker lines are detected desk top boundaries. The
boundaries are generated from a U-shape candidate of a
desk top surface because the other side is occluded by
a monitor. Figure 6-c displays legs under a 2-D desk
domain. The current algorithm to detect legs has loose
criteria for deciding whether legs are reaching to a desk
top because self occlusion and partial matches may pre-
vent legs from reaching to a desk top. Figure 6-d illus-
trates the functional evidence of a desk. In collecting
functional evidence, the current algorithm collects only
segments reaching a desk top. These signi�cant surfaces
and functional evidence allow our recognition system to
recognize and localize a desk. The recognized desk is
localized in an s-map in Figure 6-e. The front part of
the desk is represented with the thin line and the small
circles.

Figure 7 displays yet another desk scene. The desk
has a monitor on it, and is occluded by a chair. Fig-
ure 7-b illustrates detected signi�cant surfaces and func-
tional evidence that are represented as thicker lines. All
four boundaries of the desk top are successfully recovered
although front and rear boundaries of the desk are oc-
cluded by a chair and monitor respectively in Figure 7-b.
Moreover, legs and functional evidence are successfully

(a) Image (b) Matches (c) S-map

Figure 7: Desk B

(a) Image (b) Matches (c) S-map

Figure 8: Desk C

detected. Figure 7-c represents the recognized desk in
an s-map. The front part of a desk is rendered with the
thin line and the small circles.

Figure 8 displays another desk scene. The desk has a
monitor on it. Figure 8-b illustrates detected signi�cant
surfaces and functional evidence that are represented as
thicker lines. All four boundaries of the desk top are
successfully recovered although rear boundaries of the
desk are occluded by a monitor in Figure 8-b. Moreover,
legs and functional evidence are successfully detected.
Figure 8-c represents the recognized desk in an s-map.
The front part of a desk is rendered with the thin line
and the small circles.

Figure 9 displays a round desk scene. Figure 9-b illus-
trates detected signi�cant surfaces that are represented
as thicker lines. As seen in Figure 9-b, a part of the
round desk top is detected by perceptual grouping of a
rectangular shape. Then, the missed part of the round
desk top is recovered with help of legs. Figure 9-c repre-
sents the recognized desk in an s-map. The missed part
as well as the detected part is contained in the 2-D desk
domain.

(a) Image (b) Matches (c) S-map

Figure 9: Desk D



5 Complexity of the recognition system

The complexity of the recognition system depends on a
target object for recognition. In most cases, the com-
plexity of the recognition system is decided by that of
detecting the most signi�cant surface. Because the most
signi�cant surface is a key for recognition and helps to
con�ne domains of other signi�cant surfaces, it should
be detected correctly or at least have its domain selected
roughly.
In the case of recognizing a door, worst case happens

when half the segments are vertical lines and half the seg-
ments are top bars whose scopes are whole images. Then
O(n2) hypothesized door frames are generated. How-
ever, the complexity of detecting a door frame can be
O(n) in the average case because the scope of a top bar
reaches two vertical lines in most cases. The complex-
ity of other signi�cant surfaces and functional evidence
is O(n). The total complexity for recognizing a door is
O(n) in the average case or O(n2) in the worst case.
In the case of recognizing a desk, worst case happens

when all segments are desk top segments. Then gen-
erating L-shapes has complexity of O(n2). Moreover,
generating rectangles from L-shapes also has complexity
of O(n2) in the worst case. Therefore, the complexity of
detecting a desk top is O(n2) in the worst case. How-
ever, we can reduce candidate segments for a desk top
by utilizing natural posture and primitives of the desk
top surface. In most cases, the number of the segments
of a desk top is less than some constant number. These
constant number of the desk top segments allows the sys-
tem to have the complexity of O(n). The complexities
of other signi�cant surface and functional evidence are
also O(n). The total complexity for recognizing a door
is O(n) in the average case or O(n2) in the worst case.
We have analyzed the real computing time for recogni-

tion from 3-D segments. The computing time was mea-
sured in tens of laboratory scenes using Sun Sparc sta-
tion 10. Although the current system has been written
in Lisp without optimization, it showed promising re-
sults in terms of computing time. For the case of doors
in laboratory scenes, the computing time for recognition
was less than one hundredth of a second. For the case
of desks in laboratory scenes, the computing time was
less than one tenth of a second. In addition to this com-
putation, the edge detection takes about 40 seconds per
image. The matching also needs about 10 seconds. From
matched segments, an s-map is constructed in less than
one tenth of a second. Among these, we estimate that
edge detection and matching may be done within a sec-
ond with parallel processing at a reasonable cost. Thus
we believe that total computing time from images to ob-
ject recognition can be less than a second with low level
parallel processing.

6 Conclusion

We have shown some experiments on generic object
recognition of desks and doors by using representations
inspired by their functionality. Some of the evidence we
use is rather weak by itself, however, it su�ces in the
context in which shuch objects are found. We believe

that our methodology can also be applied to other large
objects commonly found in o�ces and laboratories.
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