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Abstract
This paper is concerned with the problem of tracking

clouds structures like vortices in meteorological images. For
this purpose we characterize the deformation between two
successive occurrences, by matching their two boundary
curves. Our approach is based on the computation of the set
of paths connecting the two curves to be matched. It min-
imizes a cost function which measures the local similarity
of the two curves. These matching paths are obtained as
geodesic curves on this cost surface. Moreover our method
allows to consider complex curves of arbitrary topologysince
these curves are represented through an implicit function
rather than through a parameterization. Experimental results
are given to illustrate the properties of the method in process-
ing synthetic and then meteorologic remotely-sensed data.

Keywords: Curves matching, Image sequence analysis,
Geodesic distance computation, Eulerian formulation.

1 Introduction
Images sequences obtained from environmental satellites

platforms present a new challenge for geosciences and com-
puter vision. The wide range of remote sensors allow to char-
acterize natural phenomena and infer some physical mea-
surements used in atmospheric models. For example, me-
teorologist use clouds in meteosat images as landmarks for
estimating their motion and characterize some subtropical
phenomena. Several approaches can be used to track these
phenomena: optical flow methods [4] or a method based
on pointwise tracking of moving structures like vortices and
fronts [1]. In this paper, we develop a new method for
pointwise tracking of structures by matching their contours.
Hence, the deformation between two temporal occurrences
will be obtained through a set of trajectories provided by the
matching process. Our method is based on the computation
of a set of paths connecting the two curves to be matched.
Each path minimize a cost function which measures the lo-
cal similarity between the starting and ending points of the
path. In the following we explain how our method differs
from classical ones and define its properties.

Several authors proposed methods based on invariant geo-
metrical properties in order to measure the similarity between
the curves. Often these models rely on curvature informa-
tion [3, 12] and are applied in case of rigid motion or when

the small deformation hypothesis is valid.
When this last assumption is no more satisfied, curvature
measure is not reliable. Some other approaches are based
on a parameterization of the deformation in order to derive a
similaritymeasure: Berroir et al [1] proposed a method based
on the geometry of the surface generated by the two curves
to be matched. This method performs well as long as the sur-
face remains smooth and differentiable. Unfortunately this
approach cannot handle changes in topology nor large defor-
mations since it uses a uniform parameterization.

In this paper we present a new method, which computes
the set of paths joining the curves to be matched, within
the applicative framework of atmospheric structure match-
ing. This applicative framework will mainly be used to jus-
tify our different hypothesis and to present experimental re-
sults at the end of the paper.

Our approach defines a set of paths starting from the first
curve (the source S) and ending at the second curve (the des-
tinationD). These paths are computed by minimizing a cost
function which measures the local similarity of the curves S
andD, and they are defined as geodesics of this cost function
surface.

In order to satisfy the requirements of our application, we
consider the following approach:

� The cost function is defined through a graph surface and
measures, as we previously explained, the similarity be-
tween the source and destination areas. As this function
will be defined over the whole 2D plane, computation
may be achieved independently of the topology of the
curves. This surface is the graph surface on which the
connecting paths are computed.

� We choose to define the source and destination curves
through two level set functions. This allows to con-
sider a large family of curves with complex and variable
topology. Moreover the source and destination area will
not be constrained to have the same topology nor to be
geometrically similar.

� Finally, matching the two curves is done through the
computation of paths of minimal cost connecting the
two curves. Hence the matching is not restricted to a dis-
placement field as it is the case in most curves matching
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algorithms. Moreover, the method can handle changes
in topology which occur when a contour is splitted into
several components.

These choices will be translated within a three steps scheme
based first on a specific representation of the source and desti-
nation areas, then on the computation of a similarity measure
defined through a graph surface and, finally on the character-
ization of the geodesic paths.

2 Geodesic Distance Computation
Given two points on a surface, the computation of a

geodesic joining these two points can be performed in sev-
eral ways [7]. However, in this paper we consider the ap-
proach proposed by Kimmel et al [9]. Their method is based
on the propagation of two closed curves surrounding each
point. The geodesics are then derived from the traces of these
propagated curves.

The following notations will be used in the next sec-
tions. Given a graph surface Z parameterized by Z =

(x; y; z(x; y)): p =
@z

@x
and q =

@z

@y
are the partial

derivatives of z(x; y), ~Zx and ~Zy are the partial derivatives
of Z with respect to x and y. We have, ~Zx = (1; 0; p) and
~Zy = (0; 1; q). ~N the normal to the graph surface Z. We

have, ~N =
~Zx � ~Zy

k ~Zx � ~Zyk
=

(�p;�q; 1)p
1 + p2 + q2

. �(s) is a pa-

rameterized curve on the surface Z depending on the param-
eter s: �(s) = (x(s); y(s); z(s)). ~T , the tangent to the

curve �(s) lying on the surface is given by: ~T = ~�s
j�sj

=

(xs; ys; zs)p
x2s + y2s + z2s

where xs; ys and zs are the derivatives of

the curve’s coordinates. �(s; t) represents the evolution of
the curve �(s) with respect to the parameter t. We have
�(s; 0) = �(s). For each value of the parameter t (under-
lined when fixed), we obtain a new curve �(s; t) depend-
ing of the parameter s. ~�(s; t) is the projection of the curve

�(s; t) on the (x; y)-plane. ~~t the tangent of ~�(s; t) and ~~n its

normal on the (x; y) -plane. We have: ~~t =
(xs; ys)p
x2s + y2s

and

~~n =
(�ys; xs)p
x2s + y2s

.

2.1 Geodesic distance
The distance between two points on a given surface

is defined through the shortest path length joining these
points. This shortest path is also equivalent to the minimal
geodesic [7] and is computed by the method proposed by
Kimmel et al [9]. They showed that geodesic curves are the
traces (i.e. points of constant curve parameter s) of the curve
evolving according to the equation:

~�t(s; t) =
@�

@t
(s; t) = ~N � ~T (1)

where, @�
@t

(s; t) represents the evolution of �(s; t) at the pa-

rameter value s, ~N is the surface’s normal and ~T is the tan-
gent to the curve �(s; t). This equation is called the equal
distance contour evolution of a curve �(s) on the surface Z.

The solution is difficult to achieve for a general 3D sur-
face, but restricting it to a graph surface simplifies the com-
putation. Indeed, Kimmel et al [9] showed that the solution
may be characterized through ~�(s; t)), the projection of the
curve �(s; t) on the (x; y)-plane.

Equation (1) can be rewritten in the following way:

~�t(s; t) = (xt(s; t); yt(s; t); zt(s; t)) = ~N � ~T

=
(�p;�q; 1)p
1 + p2 + q2

�
(xs; ys; zs)p
x2s + y2s + z2s

(2)

where computation is performed at point �(s; t) (see [5]).
As we previously explained, we have to characterize the

evolution on the (x; y) plane of the projecting curve ~�. In
order to define the propagation equation, it is important to
note that the tangential component of the curve only affects
the curve’s parameterization and not its shape [8]. Conse-
quently, shape’s evolution depends only on the normal com-
ponent. This normal component is computed in the follow-
ing.

Defining a propagation scheme for the projection ~� along
its normal ~~n amounts to derive from equation (2) a function
V such that

~~�t(s; t) = V ~~n (3)

where the function V represents the propagation velocity of
the curve ~�(s; t) along its normal. This velocity can be ob-
tained by computing V = ~�t(s; t) � ~~n (see [5]).

This evolution scheme depends on the curve parameter-
ization, which has to be computed at each evolution step,
through the computation of the normal vector ~~n. However,
the estimation of the normal components cannot be obtained
with high accuracy when the curve becomes complex and
looses smoothness, since the derivatives computation is very
unstable. Furthermore, a single smooth function cannot be
used for the parameterization of curves having cusps or of
complex topology. Consequently, an approach independent
of the parameterization must be used to represent the evo-
lution of complex structures. For that purpose each curve
~�(s; t) will be represented as the zero set of a two dimen-
sional function ' defined on the (x; y)-plane. This approach
is called Eulerian formulation and was introduced by Osher
and Sethian [11] for crystal growth modeling. Its major ad-
vantage is the ability to handle topological changes and sin-
gularities while insuring stability and accuracy.

Given a function ' such that its zero level set evolution
tracks the curve ~�(s; t) = '�1(0), its propagation is gov-
erned by the equation [5]:

't =
q
a'2x + b'2y � c'x'y (4)



where a =
1 + q2

1 + p2 + q2
; b =

1 + p2

1 + p2 + q2
, and c =

2pq
1 + p2 + q2

.

In this section we showed that the propagation of the pro-
jecting curve ~� is obtained through the level set curve'�1(0)
with' satisfying the evolution expressed in Eq.(4) . This for-
mulation allows to model variation of the curve’s topology
while insuring a good numerical stability and accuracy. The
solutionof this equation will be obtained througha monotone
and conservative numerical algorithm [11, 13, 14].

In order to use equation (4) for computing the geodesic
distance map of a curve �(s) on a given surface Z we have
to define an initial estimate '0 such that the initial curve � is
represented through a level set of'0. This implicit represen-
tation of the curve must satisfy the following requirement :
the function '0 has to be smooth, negative in the interior of
'�1
0

(0) and positive otherwise. This initial estimate can be
obtained through several ways according to the data. If the
areas we are trying to match have to be extracted from an im-
age, one can use a level set approach [10] and consider this
solution as an implicit representation of the area of interest.
On the other hand, if the curves have already been extracted
we can use a signed Euclidean distance. This distance is de-
rived from an Euclidean distance map [2] in such a way that
points lying in the interior of '�1(0) have negative values.
The initial estimate is consequently defined by:

'0(x; y) =

8<
:

�d(x; y) if (x; y) 2 interior of '�1
0
(0)

0 if (x; y) 2 '�1
0
(0)

d(x; y) if (x; y) 2 exterior of '�1
0

(0)
(5)

Given a graph surfaceZ and an initial estimate'0 (eq. (5))
on this surface, equation (4) characterizes the distance map
on the graph surface Z of the area which boundary is defined
by '�1

0
(0). In the next section we describe how we use this

distance map for matching two given curves.

3 Curves Matching
Curves matching consists in defining a point to point cor-

respondence between two curves. Most of the methods used
in computer vision rely on geometrical constraints or defor-
mation measure [1, 3, 12]. In both approaches a good repre-
sentation of the curves is needed in order to derive geometri-
cal properties or local similarity measures. These methods
usually break down in the interesting cases: when a curve
contains corners and cusps, or when a curve cannot be pa-
rameterized by a single smooth function or finally when the
two curves to be matched have not the same topology.

In this section we present a method based on the com-
putation of a set of paths connecting the two curves. These
curves may have several connected components and differ-
ent topologies. These two curves are defined as a source area
S and a destination areaD. Matching the source and destina-
tion areas is done through the computation of paths connect-
ing these regions. These paths are defined on a graph surface
and minimize a cost function which measures the similarity

between these two areas. This approach is particularly attrac-
tive in the absence of a reliable geometrical information and
henceforth allows to match curves which undergo a large de-
formation or curves with a complex and variable topology.
These are the main properties of the proposed approach since
we do not require any parameterization of the curves nor any
geometrical information.

The source and destination areas are defined as level sets
of two bivariate functions'0 and  0. In order to match these
two areas by making use of the geodesic distance map we
have to define :

� a graph surface on which the geodesic distance map of
each area will be computed,

� a cost function measuring the similarity between these
two areas,

� a set of paths minimizing the cost function and connect-
ing the two areas.

These three steps are described in the following subsections.
3.1 Definition of a graph surface

Given two functions '0 and  0 characterizing respec-
tively the source and destination areas (see equation (5)) we
compute two distance maps DS andDD on the graph surface
Z by solving the propagation equation (4). These maps are
defined by the equations:

DS = f(x; y; '(x; y))g (6)

and,
DD = f(x; y;  (x; y))g (7)

where ' and  are respectively the solutions of equation (4)
with initial estimate '0 and  0. The ' and  functions rep-
resent the distance maps on the graph surfaceZ of the source
and destination areas. The graph surface has to be the same
for the computation of ' and  in order to define a similarity
measure based on the two distance maps DS and DD. Fur-
thermore, in the equal distance curve evolution model given
by equation (4), the initial estimate has to be on the consid-
ered graph surface Z. In order to satisfy these two require-
ments we define the surface Z with the following graph:

(x; y; z(x; y)) = (x; y;min(j'0j; j 0j)) (8)

This surface defines the graph surface Z such that, the two
curves '0 and  0 are zero level set and on which the distance
maps DS and DD are computed. At each point of the (x; y)-
plane, the DS and DD maps represent the geodesic distance
to the source and destination area respectively.
3.2 Definition of a similarity measure

In our model, we define the matching of two curves
through the definition of paths with minimal cost connecting
these two curves. This amounts to characterize for each point
XS on the first curve a path starting at XS , ending at an un-
known point XD of the second curve and having a minimal
cost. Computing such a path amounts to search for an opti-
mal path popt among all the paths pXS starting at XS , ending



on a point XD of the second curve and minimizing a given
cost function f(x; y). The path popt is then defined by:

C(poptXS
) = minpXSC(pXS ): (9)

C(pXS ) measures the cost along the path pXS , measured by:

C(pXS ) =

Z XD

XS

f(x; y)ds (10)

where XD is the first point of the area D attained by the path
pXS .

The cost function f has to characterize the similarity be-
tween the two curves. Furthermore, the matching between
the source and destination area has to be symmetric in the
sense that the source and the destination area may be inverted
without changing the matching paths. This means that if ~pXDXS
denotes the optimal path connecting the pointsXS and XD ,
we have the property: ~pXDXS = ~pXSXD . Fulfilling such a prop-
erty restricts the choice of the cost function f , since it must
define a similarity measure which depends only on the source
and destination areas independently of the order in which
they are considered. For this purpose we consider the cost
function given by equation :

f(x; y) = '(x; y) +  (x; y) (11)

where ' and  are the bivariate functions defining the dis-
tance maps DS and DD. This function allows to compute at
each point of the plane the minimal distance on the surface Z
defined by equation (8) to the nearest region S or D.

A more elaborate model should also take into account
the geometrical properties of the curves. For example, we
can use the curvature information in a small neighborhood
of the source and destination areas. Within these neighbor-
hoods curvature information is relevant since only small de-
formation occurs and the curvature measure may be used to
strengthen the similarity measure.
3.3 Characterizing the matching paths

Defining the matching paths connecting the two areas
amounts to characterize for each point XS on the first curve
the path popt (eq. (9)) connecting this point to an unknown
point XD on the second curve. Such an approach is not
straightforward, since we have to compute all paths connect-
ing the point XS to the destination area D and then select
the one of minimal cost. It is numerically expensive and one
has to store all the paths before selecting the one of minimal
cost value. Instead, we use a property of the graph surfaces
DS and DD which relates the equal distance contour to min-
imal paths: the minimal paths are orthogonal to equal dis-
tance contours. Given a starting point XS , this property de-
fines a robust method for characterizing the path of minimal
cost connecting this point to a point belonging to the desti-
nation area. Such a path is characterized through its tangent
vector. Since the equal distance contours are level sets of the
map DS + DD, the tangent vector is defined by the gradient
of the cost function:

rf = r'+r 

Figure 1: A plot of the curves to be matched. The source area
is plotted in boldface while the two circles represent the des-
tination area.

Figure 2: A level set plot of the cost function f measuring the
similarity between the ellipse and the circles.

This approach gives a reliable path construction scheme:
given a point XS on the source area, move this point in the
opposite direction of the gradient of f until reaching a point
on the destination area. The result is the minimal cost path
connecting the two areas and starting at XS . This path p(s)
is defined by the parameterized curve p(s) such that: p(0) =
XS , p(1) = XD and

@p

@s
= �r(DS +DD)

whereXS 2 '�1
0
(0) is given andXD 2  �1

0
(0) is unknown.

4 Experimental Results
The proposed method is applied to synthetic data in order

to test our method and real data obtained from a meteorologi-
cal satellite. The first set of experimental results is given to il-
lustrate our approach. In this case, the curves are quite simple
so that the reader can figure out how the method is used. The
second type of results concerns the matching of curves ex-
tracted from real Meteosat data. We will show a two frames
tracking of a cloud structure in a sequence of images depict-
ing a tropical storm.

The different experimental results given in this paper illus-
trate the properties of the proposed method such as complex
shape deformation and matching curves based on geodesic
computation. The considered data cannot be processed with
the classical methods proposed by several authors [1, 3, 12].
However, matching structures undergoing a small deforma-
tion gave results comparable to the methods described in the
papers [3] and [1].



Figure 3: A plot of the paths matching the ellipse to the cir-
cles. The blue points represent the starting points of the paths
and the black ones the ending points.

4.1 Synthetic data
In the first synthetical example, we match an ellipse into

two smaller circles. This first example is given to illustrate
how the model handle curves with different topology. Fig-
ure 1 shows the curves to be matched: an ellipse into two cir-
cles. The graph surface representing the cost function which
is used for path computation is displayed in figure 2.

The paths are represented in figure 3 where the blue points
represent the starting points and the black ones are those lo-
cated on the destination area. In this example we have a point
to point matching which allows to deform one initial implicit
contour into another. However, some points of the ellipse are
not matched to a point on one of the circles, while every point
of destination area i.e. the circles; are matched to a point lo-
cated on the source area. This is due to the fact that there is
none one-to-one function deforming the ellipse to the two cir-
cles.

In this example, and the following ones, we sample the
source area uniformly and these points represent the source
points from which the paths are computed. Although some
paths are not displayed, they can be computed provided an
initial point is given, since the cost function is available on
the complete plan.

Figure 4: An example of matching curves with very large de-
formation. The circle go through a large deformation which
yields the boldface curve.

Figure 5: A plot of the paths joining the source area (blue
points) to the destination area (black points).

A second example is illustrated in Figure 4. This fig-
ure shows the synthetic deformation of a circle into a com-
plex shape. In this example, the circle undergoes a large de-
formation and geometrical information like curvature is not
reliable for defining a similarity measure between the two
curves. Even, a method based on the surface generated by
the two curves is not able to provide the paths matching the
curves. Indeed, this surface has singularities since the des-
tination area is not star shaped relatively to the source area,
which means that linear paths starting from the source area do
not span the complete destination area. This notion of rela-
tive star shaped curves, is one of the limitations encountered
by classical matching methods which define curve matching
through lines joining the two curves or minimal surfaces de-
fined by the two contours at z = 0 and z = 1. In the proposed
approach, we do not encounter this problem since the paths
connecting the source and destination area are curves defined
through the gradient of the cost function f (eq. (11)). We can
see in figure 5 that the paths joining the two curves do not
cross one each each other. However, we observe that some
paths accumulate near some regions of minimal cost since
the path construction scheme is based on a gradient descent
approach (see section 3.3) which characterizes such paths.
Such regions do occur when a large deformation is needed
to deform one curve into another one or when the topology
of the curves is different.

4.2 Meteorological images
The last experiments were led on a Meteosat temporal

sequence image of an atmospheric depression in the trop-
ics. The Meteosat satellite have a 30 minutes acquisition’s
frequency. In some situations, this temporal sampling is
not sufficient to characterize the structures evolution and a
model have to be considered. For example, in the tropics
clouds structures aggregate and disaggregate rapidly. Figure
6 shows two frames of such a sequence. In order to track
this structure in a model we have to take into account that
the structure deforms rapidly and its topology varies in time.
The method proposed in this paper defines a new approach
for curve deformation and matching using geodesic distance



maps.

Figure 6: An extraction of clouds boundaries using a snake
model in a Meteosat temporal image sequence (courtesy of
LMD). These two images represent a merging of two clouds
structures into one cloud.

Figure 6 shows the result of segmentation by a snake
model [6] of the two structures of interest in the Meteosat
images. These two curves are considered as a source and
destination area for computing the similarity function and
the matching paths. These paths are plotted in figure 7. We
can observe that they are smooth and do not cross one to
each other even near regions of minimal cost. Moreover the
matching paths are locally smooth and the global deforma-
tion of a structure into another one is also smooth.

5 Conclusion and future research
In this paper we presented a new approach for curves

matching. This approach is based on the computation of
paths of minimal cost connecting the two curves represented
as a source and destination area. These paths lye on a graph
surface measuring the similarity between the source and des-
tination areas. This approach is particularly attractive in
the absence of a reliable geometrical information and hence-
forth allows to match curves which undergo a large deforma-
tion or curves with a complex and variable topology. The
section describing the experimental results shows that this
model handle easily large deformation or topology changes.
A more elaborate model is under study in order to take into
account the curvature information in a small neighborhood
of the source and destination areas. Within these neighbor-
hoods curvature information is relevant since only small de-
formation occurs and the curvature measure may be used to
strengthen the similarity measure.
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