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Abstract

This paper is concerned with the problem of tracking
clouds structureslike vorticesin meteorol ogical images. For
this purpose we characterize the deformation between two
successive occurrences, by matching their two boundary
curves. Our approach is based on the computation of the set
of paths connecting the two curves to be matched. It min-
imizes a cost function which measures the loca similarity
of the two curves. These matching paths are obtained as
geodesic curves on this cost surface. Moreover our method
allowsto consider complex curvesof arbitrary topology since
these curves are represented through an implicit function
rather than through a parameterization. Experimental results
aregiventoillustratethe propertiesof themethod in process-
ing synthetic and then meteorol ogic remotely-sensed data

Keywords: Curves matching, Image sequence analysis,
Geodesic distance computation, Eulerian formulation.

1 Introduction

I mages sequences obtained from environmental satellites
platforms present a new challenge for geosciences and com-
puter vision. Thewiderange of remote sensorsallow to char-
acterize natural phenomena and infer some physical mea-
surements used in atmospheric models. For example, me-
teorologist use clouds in meteosat images as landmarks for
estimating their motion and characterize some subtropical
phenomena. Severa approaches can be used to track these
phenomena: optical flow methods [4] or a method based
on pointwise tracking of moving structures like vortices and
fronts [1]. In this paper, we develop a new method for
pointwise tracking of structures by matching their contours.
Hence, the deformation between two tempora occurrences
will be obtained through a set of trgjectories provided by the
matching process. Our method is based on the computation
of a set of paths connecting the two curves to be matched.
Each path minimize a cost function which measures the | o-
ca similarity between the starting and ending points of the
path. In the following we explain how our method differs
from classical ones and define its properties.

Several authorsproposed methods based oninvariant geo-
metrical propertiesinorder to measurethesimilarity between
the curves. Often these models rely on curvature informa-
tion [3, 12] and are applied in case of rigid motion or when
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the small deformation hypothesisisvalid.

When this last assumption is no more satisfied, curvature
measure is not reliable. Some other approaches are based
on a parameterization of the deformation in order to derive a
similarity measure: Berroir et al [ 1] proposed amethod based
on the geometry of the surface generated by the two curves
to be matched. Thismethod performswell aslong asthe sur-
face remains smooth and differentiable. Unfortunately this
approach cannot handl e changes in topol ogy nor large defor-
mations since it uses a uniform parameterization.

In this paper we present a new method, which computes
the set of paths joining the curves to be matched, within
the applicative framework of atmospheric structure match-
ing. This applicative framework will mainly be used to jus-
tify our different hypothesis and to present experimental re-
sultsat the end of the paper.

Our approach defines a set of paths starting from the first
curve (the source S) and ending at the second curve (the des-
tination D). These paths are computed by minimizing a cost
function which measures the local similarity of the curves S
and D, and they are defined as geodesi cs of thiscost function
surface.

In order to satisfy the requirements of our application, we
consider the following approach:

¢ The cost functionisdefined through a graph surface and
measures, aswe previously explained, thesimilarity be-
tween the source and destination areas. Asthisfunction
will be defined over the whole 2D plane, computation
may be achieved independently of the topology of the
curves. This surface is the graph surface on which the
connecting paths are computed.

¢ \We choose to define the source and destination curves
through two level set functions. This alows to con-
sider alarge family of curveswith complex and variable
topol ogy. Moreover the source and destination areawill
not be constrained to have the same topol ogy nor to be
geometrically similar.

e Finaly, matching the two curves is done through the
computation of paths of minimal cost connecting the
two curves. Hence thematchingisnot restrictedtoadis-
placement field asit isthe case in most curves matching



algorithms. Moreover, the method can handle changes
in topology which occur when a contour is splitted into
several components.

These choices will be trand ated within a three steps scheme
based first on aspecific representation of thesource and desti-
nation areas, then on the computation of asimilarity measure
defined through a graph surface and, finally on the character-
ization of the geodesic paths.

2 Geodesic Distance Computation

Given two points on a surface, the computation of a
geodesic joining these two points can be performed in sev-
eral ways [7]. However, in this paper we consider the ap-
proach proposed by Kimmel et al [9]. Their method is based
on the propagation of two closed curves surrounding each
point. The geodesicsare then derived from thetraces of these
propagated curves.

The following notations will be used in the next sec-
tions. Given a graph surface /7 parameterized by 77 =
Ay
derivativesof z(z,y), Z, and Z, arethe partial derivatives
of Z with respect to » and y. We have, 7, = (1,0, p) and
Zy =(0,1,9). qN thg norma to the graph surface 7. We
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the curve's coordinates. «(s, ) represents the evolution of
the curve «(s) with respect to the parameter t. We have
a(s,0) = a(s). For each value of the parameter ¢ (under-
lined when fixed), we obtain a new curve «(s, ) depend-
ing of the parameter s. &(s,¢) isthe projection of the curve
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2.1 Geodesic distance

The distance between two points on a given surface
is defined through the shortest path length joining these
points. This shortest path is also equivalent to the minimal
geodesic [7] and is computed by the method proposed by
Kimmel et al [9]. They showed that geodesic curves are the
traces (i.e. pointsof constant curve parameter s) of the curve
evolving according to the equation:
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where, %—?(g, t) representsthe evolution of a (s, ¢) at the par

rameter value s, N is the surface’s normal and 7' is the tan-
gent to the curve a(s,t). Thisequation is caled the equal
distance contour evolution of a curve a(s) onthe surface Z.

The solution is difficult to achieve for a general 3D sur-
face, but restricting it to a graph surface simplifies the com-
putation. Indeed, Kimmel et al [9] showed that the solution
may be characterized through &(s, t)), the projection of the
curve o (s, t) onthe (z, y)-plane.

Equation (1) can be rewritten in the following way:

ay(s, 1) = (wi(s,0), ye(s, 1), z(s,0)) = N x T
(—p,—q, 1) (xs,ys,zs)
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where computationis performed at point (s, t) (see[5]).

As we previoudly explained, we have to characterize the
evolution on the (x, y) plane of the projecting curve &. In
order to define the propagation equation, it is important to
note that the tangential component of the curve only affects
the curve's parameterization and not its shape [8]. Conse-
guently, shape's evol ution depends only on the normal com-
ponent. This normal component is computed in the follow-
ing.

Defining a propagation scheme for the projection & along
itsnormal 7 amounts to derive from equation (2) a function
V' such that

dr(s,0) = Vi 3
where the function V' represents the propagation velocity of
the curve G (s, t) along its normal. Thisvelocity can be ob-
tained by computing V = @ (s, t) - n (see[5]).

This evolution scheme depends on the curve parameter-
ization, which has to be computed a each evolution step,
through the computation of the normal vector 7. Howeve,
the estimation of the norma components cannot be obtai ned
with high accuracy when the curve becomes complex and
looses smoothness, since the derivatives computationisvery
unstable. Furthermore, a single smooth function cannot be
used for the parameterization of curves having cusps or of
complex topology. Consequently, an approach independent
of the parameterization must be used to represent the evo-
[ution of complex structures. For that purpose each curve
(s, t) will be represented as the zero set of a two dimen-
sional function ¢ defined onthe (z, y)-plane. This approach
iscaled Eulerian formulation and was introduced by Osher
and Sethian [11] for crystal growth modeling. Its major ad-
vantage is the ability to handle topologica changes and sin-
gularitieswhileinsuring stability and accuracy.

Given a function ¢ such that its zero level set evolution
tracks the curve a(s,t) = ~1(0), its propagation is gov-
erned by the equation [5]:
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where a = 77+ ¢ 1—|—p2—|—q2'andc =
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In this section we showed that the propagation of the pro-
jectingcurve & isobtained throughthelevel set curvep=1(0)
with ¢ satisfying theevolution expressed in Eq.(4) . Thisfor-
mulation alows to model variation of the curve's topology
whileinsuring a good numerical stability and accuracy. The
solutionof thisequationwill be obtai ned throughamonotone
and conservative numerical algorithm [11, 13, 14].

In order to use equation (4) for computing the geodesic
distance map of a curve o(s) on agiven surface Z we have
to define aninitia estimate ¢, such that theinitia curvea is
represented through aleve set of . Thisimplicit represen-
tation of the curve must satisfy the following reguirement :
the function ¢, has to be smooth, negative in the interior of
¢ 1(0) and positive otherwise. Thisinitial estimate can be
obtained through several ways according to the data. If the
areas we aretrying to match have to be extracted from an im-
age, one can use alevel set approach [10] and consider this
solution as an implicit representation of the area of interest.
On the other hand, if the curves have aready been extracted
we can use asigned Euclidean distance. This distanceis de-
rived from an Euclidean distance map [2] in such away that
pointslying in the interior of x»=1(0) have negative values.
The initial estimate is consequently defined by:

{ —d(x,y)
QDO(x’y) = 0
d(x, y)

if (x,y) € interior of o5 (0)
if (x,9) € 957 (0)
if (x,y) € exterior of p5'(0)
(5)
Givenagraph surface 7 and aninitia estimate ¢, (eg. (5))
on this surface, equation (4) characterizes the distance map
on the graph surface 7 of the area which boundary is defined
by 5 1(0). Inthe next section we describe how we use this
distance map for matching two given curves.

3 CurvesMatching

Curves matching consistsin defining a point to point cor-
respondence between two curves. Most of the methods used
in computer vision rely on geometrical constraints or defor-
mation measure [1, 3, 12]. In both approaches a good repre-
sentation of the curvesisneeded in order to derive geometri-
cal properties or local similarity measures. These methods
usually break down in the interesting cases. when a curve
contains corners and cusps, or when a curve cannot be pa-
rameterized by a single smooth function or finally when the
two curves to be matched have not the same topol ogy.

In this section we present a method based on the com-
putation of a set of paths connecting the two curves. These
curves may have several connected components and differ-
ent topol ogies. These two curves are defined asasource area
S and adestinationarea . Matching the source and destina:
tion areas is done through the computation of paths connect-
ing theseregions. These paths are defined on agraph surface
and minimize a cost function which measures the similarity

between thesetwo areas. Thisapproachisparticularly attrac-
tivein the absence of areliable geometrical information and
henceforth alows to match curves which undergo alarge de-
formation or curves with a complex and variable topology.
These are themain propertiesof the proposed approach since
we do not require any parameterization of the curves nor any
geometrical information.

The source and destination aress are defined aslevel sets
of two bivariate functions g and 1. Inorder to match these
two areas by making use of the geodesic distance map we
have to define:

e agraph surface on which the geodesic distance map of
each areawill be computed,

e acost function measuring the similarity between these
two aress,

o aset of paths minimizing the cost function and connect-
ing the two aress.

These three steps are described in the foll owing subsections.
3.1 Définition of a graph surface

Given two functions ¢y and ¢ characterizing respec-
tively the source and destination areas (see equation (5)) we
computetwo distance mapsDs and Dp onthegraph surface
Z by solving the propagation equation (4). These maps are
defined by the equations:

Ds = {(x,y, ¢(x,y))} (6)

and,
Dp = {(z,y,¢(z,y))} (7

where ¢ and v are respectively the solutionsof equation (4)
with initial estimate ¢, and ¢,. The ¢ and ¢ functionsrep-
resent the distance maps on the graph surface 7 of the source
and destination areas. The graph surface has to be the same
for the computation of ¢ and v in order to define asimilarity
mesasure based on the two distance maps Ps and Dp. Fur-
thermore, in the equal distance curve evolution model given
by equation (4), the initial estimate has to be on the consid-
ered graph surface 7. In order to satisfy these two require-
ments we define the surface 7 with the following graph:

(8)

This surface defines the graph surface 7 such that, the two
CUrves ¢ and v, arezero level set and on which thedistance
maps Ds and Dp are computed. At each point of the (z, y)-
plane, the D¢ and Dp maps represent the geodesic distance
to the source and destination area respectively.
3.2 Définition of asimilarity measure

In our model, we define the matching of two curves
through the definition of pathswith minimal cost connecting
thesetwo curves. Thisamountsto characterize for each point
X onthefirst curve a path starting at X s, ending a an un-
known point X of the second curve and having a minimal
cost. Computing such a path amounts to search for an opti-
mal path p°?* among all thepathspyx ., startingat X5, ending

(x,y,z(x,y)) = (l‘,y, mln(|300|a |1/)0|))



on apoint Xp of the second curve and minimizing a given
cost function f(z, y). The path p°r* isthen defined by:

)
C'(px ) measures the cost along the path px ., measured by:

C(p3e) = miny, C(px.)-

Xp

flz,y)ds
Xs

where X p isthefirst point of thearea D attained by the path
Px

C(st) = (10)

The cost function f has to characterize the similarity be-
tween the two curves. Furthermore, the matching between
the source and destination area has to be symmetric in the
sense that the source and the destination areamay beinverted
without changing thematching paths. Thismeansthat if ﬁ§§
denotes the optimal path connecting the points X s and Xp,
we have the property: 552 = p= . Fulfilling such a prop-
erty restricts the choice of the cost function f, since it must
defineasimilarity measure which depends only on the source
and destination areas independently of the order in which
they are considered. For this purpose we consider the cost
function given by equation:

f($’y) = go(a:,y) + 1/)(1‘,3/)

where ¢ and ¢ are the bivariate functions defining the dis-
tance maps Ds and Dp. Thisfunction alowsto compute at
each point of the planethe minimal distance onthe surface 7
defined by equation (8) to the nearest region S or D.

A more elaborate model should also take into account
the geometrica properties of the curves. For example, we
can use the curvature information in a small neighborhood
of the source and destination areas. Within these neighbor-
hoods curvature informationis relevant since only small de-
formation occurs and the curvature measure may be used to
strengthen the similarity measure.

3.3 Characterizing the matching paths

Defining the matching paths connecting the two areas
amounts to characterize for each point Xs onthefirst curve
the path p°?* (eg. (9)) connecting this point to an unknown
point Xp on the second curve. Such an approach is not
straightforward, since we haveto compute al paths connect-
ing the point X¢ to the destination area 1 and then select
the one of minimal cost. It is numerically expensive and one
has to store all the paths before selecting the one of minimal
cost value. Instead, we use a property of the graph surfaces
Ds and Dp whichrelatesthe equa distance contour to min-
imal paths. the minima paths are orthogona to equa dis-
tance contours. Given a starting point X ¢, this property de-
fines arobust method for characterizing the path of minimal
cost connecting this point to a point belonging to the desti-
nation area. Such apath is characterized through its tangent
vector. Sincethe equal distance contoursare level sets of the
map Ds + Dp, thetangent vector is defined by the gradient
of the cost function:

(1)

Vf=Ve+ Vi

Figurel: A plot of thecurvesto be matched. The sourcearea
is plotted in bol df ace while the two circles represent the des-
tination area.

Figure2: A level set plot of thecost function f measuringthe
similarity between the ellipse and the circles.

This approach gives a reliable path construction scheme:
given apoint Xs on the source area, move this point in the
opposite direction of the gradient of f until reaching a point
on the destination area. The result isthe minimal cost path
connecting the two areas and starting a X . Thispath p(s)
isdefined by the parameterized curvep(s) such that: p(0) =
Xg,p(1) = Xp and

9
= —V(Ds+Dp)

where X5 € o' (0)isgivenand X € +5 ' (0) isunknown.

4 Experimental Results

The proposed method is applied to synthetic datain order
totest our method and real dataobtained from ameteorologi-
cal satellite. Thefirst set of experimenta resultsisgiventoil-
lustrateour approach. Inthiscase, thecurvesare quitesimple
so that the reader can figure out how themethod isused. The
second type of results concerns the matching of curves ex-
tracted from real Meteosat data. We will show a two frames
tracking of a cloud structurein a sequence of images depict-
ing atropical storm.

Thedifferent experimental resultsgiveninthispaperillus-
trate the properties of the proposed method such as complex
shape deformation and matching curves based on geodesic
computation. The considered data cannot be processed with
the classical methods proposed by severa authors[1, 3, 12].
However, matching structures undergoing a small deforma-
tion gave results comparable to the methods described in the
papers[3] and [1].
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Figure 3: A plot of the paths matching the ellipseto the cir-
cles. Theblue pointsrepresent thestarting pointsof the paths
and the black ones the ending points.

4.1 Synthetic data

In the first synthetical example, we match an elipseinto
two smaller circles. Thisfirst exampleis given toillustrate
how the model handle curves with different topology. Fig-
ure 1 showsthe curvesto bematched: an ellipseintotwocir-
cles. The graph surface representing the cost function which
isused for path computationisdisplayed in figure 2.

The paths are represented in figure 3 where the blue points
represent the starting points and the black ones are those lo-
cated on thedestinationarea. In thisexamplewehaveapoint
to point matching which alowsto deform oneinitia implicit
contour into another. However, some pointsof thedlipseare
not matched to a point on one of the circles, whileevery point
of destination areai.e. thecircles; are matched to apoint lo-
cated on the source area. Thisis due to the fact that there is
noneone-to-onefunction deformingtheelipseto thetwocir-
cles.

In this example, and the following ones, we sample the
source area uniformly and these points represent the source
points from which the paths are computed. Although some
paths are not displayed, they can be computed provided an
initial point is given, since the cost function is available on
the compl ete plan.

Figure4: Anexample of matching curveswithvery large de-
formation. The circle go through a large deformation which
yields the boldface curve.
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Figure 5: A plot of the paths joining the source area (blue
points) to the destination area (black points).

A second example is illustrated in Figure 4. This fig-
ure shows the synthetic deformation of a circle into a com-
plex shape. In thisexample, the circle undergoes alarge de-
formation and geometrical information like curvature is not
reliable for defining a similarity measure between the two
curves. Even, a method based on the surface generated by
the two curvesis not able to provide the paths matching the
curves. Indeed, this surface has singularities since the des-
tination area is not star shaped relatively to the source area,
whichmeansthat linear pathsstarting fromthe sourceareado
not span the compl ete destination area. This notion of rela-
tive star shaped curves, is one of the limitationsencountered
by classical matching methods which define curve matching
through linesjoining the two curves or minimal surfaces de-
fined by thetwo contoursat z = 0 and z = 1. Intheproposed
approach, we do not encounter this problem since the paths
connecting the source and destination area are curves defined
through the gradient of the cost function f (eg. (11)). Wecan
see in figure 5 that the paths joining the two curves do not
Cross one each each other. However, we observe that some
paths accumulate near some regions of minimal cost since
the path construction scheme is based on a gradient descent
approach (see section 3.3) which characterizes such paths.
Such regions do occur when a large deformation is needed
to deform one curve into another one or when the topology
of the curvesisdifferent.

4.2 Meteorological images

The last experiments were led on a Meteosat temporal
sequence image of an atmospheric depression in the trop-
ics. The Meteosat satellite have a 30 minutes acquisition’s
frequency. In some situations, this temporal sampling is
not sufficient to characterize the structures evolution and a
model have to be considered. For example, in the tropics
clouds structures aggregate and disaggregate rapidly. Figure
6 shows two frames of such a sequence. In order to track
this structure in a model we have to take into account that
the structure deforms rapidly and itstopology variesin time.
The method proposed in this paper defines a new approach
for curve deformation and matching using geodesic distance



maps.

Figure 6: An extraction of clouds boundaries using a snake
model in a Meteosat tempora image sequence (courtesy of
LMD). These two images represent amerging of two clouds
structuresinto one cloud.

Figure 6 shows the result of segmentation by a snake
model [6] of the two structures of interest in the Meteosat
images. These two curves are considered as a source and
destination area for computing the similarity function and
the matching paths. These paths are plotted in figure 7. We
can observe that they are smooth and do not cross one to
each other even near regions of minimal cost. Moreover the
matching paths are locally smooth and the global deforma-
tion of a structureinto another oneis also smooth.

5 Conclusion and futureresearch

In this paper we presented a new approach for curves
matching. This approach is based on the computation of
paths of minimal cost connecting the two curves represented
as a source and destination area. These pathslye on a graph
surface measuring the similarity between the source and des-
tination areas. This approach is particularly attractive in
the absence of areliable geometrical information and hence-
forth alowsto match curves which undergo alarge deforma-
tion or curves with a complex and variable topology. The
section describing the experimental results shows that this
model handle easily large deformation or topology changes.
A more elaborate model is under study in order to take into
account the curvature information in a small neighborhood
of the source and destination areas. Within these neighbor-
hoods curvature informationis relevant since only small de-
formation occurs and the curvature measure may be used to
strengthen the similarity measure.
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