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Abstract

This paper introduces a new real-time blob tracking algorithm. Segmentation is the first step in many
video analysis approaches. A number of successful segmentation techniques extract regions of interest,
or blobs, in successive frames. The problem addressed here is that of establishing temporal relationships
between blobs, without the use of domain-specific information. These relationships can then be analysed
at a higher semantic level. The proposed algorithm maintains a multi-resolution tracking graph that
encodes, at each resolution, the temporal relationships of the blobs detected in successive frames. As
blob displacement in image space is reduced in lower resolution levels, a coarse-to-fine correspondence
hypotheses generation, propagation and refinement approach allows to track not only large, slow blobs
but also small, fast blobs. Tracking performance is illustrated on various simple application scenarios
using a real-time implementation of an integrated segmentation and tracking system. Blob tracking
results are demonstrated on standard video surveillance datasets, as well as real-time ball (and player)
tracking results in professional tennis and racquetball videos.

1 Introduction

A large number of works in the vision community have focused on video analysis, especially for video
surveillance (see e.g. [7] for an overview, and [1, 2, 3, 4] for recent developments).

Most approaches, involve, as a first step, moving or non-background object segmentation (see e.g. [12, 13,
18]). The output of this stage is, for each frame, a set of labeled regions, or blobs. Establishing temporally
consistent labels for the detected blobs falls under the generic domain of tracking. Different levels of tracking,
however, should be distinguished, depending on the semantic level of the tracked entities, and the amount
of domain-specific knowledge involved.

Some approaches attempt to design algorithms for tracking specific objects in specific situations, thus
collapsing all aspects of tracking. The approach followed here relies on the assumption that a robust system
can be achieved by using a collection of modules producing inherently “imperfect” results. Figure 1 outlines a
possible classification of video data by semantic level, and the generic tasks associated with their computation
or inference.

Tracking is addressed in this paper at the lowest possible semantic level, that is in the sense of establish-
ing temporal relationships between segmented generic features (blobs), without the use of domain-dependent
information. The proposed tracking algorithm comes at the second step up the semantic ladder, right after
the initial segmentation. In particular, the concept of layer (and thus occlusion/disocclusion) is irrelevant
at this stage: blobs can only appear, disappear, split and merge (in 2-D image space). Layers must be
embeded in higher dimensional space, and should be handled at the next level of processing. Blob ap-
pearance/disppearance and split/merge caused by noise, reflections, and shadows, may be analysed to infer
trajectories and layers (see e.g. [15]). Reasoning involving higher level, possibly domain-specific knowledge,
can then be applied to infer entities, actors (see e.g. [19]) and events to finally allow activity recognition.
These issues are addressed in processes of higher semantic levels, and are out of the scope of the reported
work.

The goal here is to build a module capable of establishing, in real-time, temporal relationships between
image features belonging to possibly small and fast targets, without domain-dependent information.

This paper is organized as follows. Section 2 places this work in the rich context of tracking. Section 3
gives an overview of the proposed tracking algorithm. Section 4.1 describes . Section 4 describes the details
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Figure 1: Possible semantic levels in video analysis.

of the multi-resolution blob tracking algorithm, specifically, multi-level tracking graph construction, blob
matching hypothesis gereration, and hypothesis propagation and refinement down hierarchy levels. Section
5 presents experimental results. Section 6 offers a summary and perspectives.

2 Related work

A number of techniques have been used successfully for blob tracking, using various properties such as blob
size, shape or color, possibly involving higher level or domain-specific knowledge, with open or closed world
assumptions.

Kalman filters work well and efficiently when an accurate model of the problem is available. Unfortunately,
2D trajectories as observed in arbitrary video sequences are projections of the 3D trajectories of possibly
autonomous and independent agents. When used for tracking (see e.g. [11]), interesting (in the sense as
non trivial and thus difficult to track) trajectory changes are modeled as noise. Unless their sensitivity
is artificially dampened, Kalman filters, while providing a solid mathematical foundation, fail when the
problem becomes interesting. Another limitation of Kalman filters is their inability to represent multiple
simultaneous hypotheses. Particle filtering and related algorithms (see e.g. [14]) require no model and
support multi-modal tracking, at the cost of higher computational load. More importantly, because of their
stochastic nature, they do not allow to track small fast objects, whose corresponding blobs might be far
apart, and are more likely to be lost in noise.

Since segmentation (and grouping) is performed separately, a deterministic approach, consisting of es-
tablishing temporal relation hypotheses between blobs in successive frames, resulting in a tracking graph,
seems a more efficient approach. Previous graph-based algorithms (see e.g. [6]) give satisfactory results on
large, slow targets. The difficulty here is to generate all relevant hypotheses without generating all possible
hypotheses. The method presented in this paper makes use of multi-resolution to address this challenge.
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Figure 2: Overview of multi-resolution blob tracking.

3 Approach overview

For each frame, randomly labeled connected components (blobs) are assumed to have been produced by
some segmentation technique. In the case of video captured with a fixed camera, adaptive background color
model-based temporal segmentation gives foreground blobs that are often satisfactory, although imperfect
[17].

The proposed tracking algorithm maintains a multi-resolution tracking graph that encodes, at each
resolution, the temporal relationships of the blobs detected in successive frames. Multiple hypotheses are
preserved with a measure of confidence, derived from a blob dissimilarity measure. The tracking graph
is composed of time slices that encode the information corresponding to a given input frame. Each time
slice of the graph is a pyramid, of which the highest resolution level is directly built from the input labeled
components image. Lower resolution levels encode the same data with a spatial resolution reduction. As a
result, apparent blob motion is reduced in these levels (when interpreted as images and related to the original
image space). Links between graph time slices encode temporal relationships between blobs in successive
slices. A coarse-to-fine correspondence hypotheses generation, propagation and refinement approach allows
to track large, slow blobs as well as small, fast blobs.

Figure 2 depicts the main steps of the algorithm. For each new set of blobs (extracted from a new frame):

• Construct the corresponding time slice of the tracking graph

• Hypothesize blob correspondences at lowest resolution level

• For each level of the graph, by order of increasing resolution:

– Propagated hypotheses from previous level

– Refined and/or complete hypotheses

The process is repeated for each level until hypotheses are formed for the original resolution. These steps
are explained in detail in the next section.

The use of multi resolution allows to achieve robust, real-time tracking. At the low semantic level
considered here, the maximum confidence path combined with unicity constraints can be used to infer
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consistent labeling of the blobs. Most applications however will require higher level analysis of the graph, as
mentioned above.

4 A multi-resolution blob tracking algorithm

4.1 Graph time-slice construction

The tracking graph is composed of time slices that encode the information corresponding to a given input
frame. Each time slice of the graph is composed of a multi resolution pyramid (image space) and a set of
potential targets (target instances space) for each resolution. A potential target instance is instantiated for
each blob in each pyramid level. The temporal relations between blobs, or targets, are encoded as graph
edges between the potential targets in consecutive slices for a same level. Each edge is labeled with a measure
of confidence computed using a blob dissimilarity measure. Each target also points to the corresponding
targets in the levels just above and just below, in the same time slice.

Each element in a pyramid level–called pixels hereafter, although they are not strictly speaking picture
elements–refers to a potential target. The highest resolution level of the pyramid (by convention level l = 0)
is directly built from the input labeled components image. Thus, lower resolution levels (by convention levels
l = 1 . . . n − 1, where n is the number of pyramid levels) encode the same data with a spatial resolution
reduction. Apparent blob motion is therefore slowed down in these levels (when interpreted as images and
related to the original image space).

Lower levels are built by reducing the resolution by a factor 2. Four pixel blocs in one level are mapped
to one pixel in the next lower resolution level. Depending on the method used for downsampling, the level of
detail and noise can also be reduced, although it is not necessarily desirable. It is clear that large blobs will
be preserved through the pyramid. Furthermore, two corresponding large slow blobs at the lowest resolution
of two consecutive time slices will have most of their pixels overlapping (if only because the overall number of
pixels is dropped dramatically compared to the original resolution). For these blobs, matching the new target
with the one corresponding to the largest overlap area yields the right solution in most cases. Consequently,
large slow blobs do not require a large number of pyramid levels for accurate robust tracking.

Small, potentially fast moving blobs are more challenging. Small blobs might be noise, but might also
be important features of the scene (e.g. in a tennis match, it is imperative not to discard the ball as noise).
In accordance with the conclusions of [16], discerning between small objects and noise (and shadows) is not
addressed at the segmentation stage. Rather, segmentation, being a very low level process, will give as good
an output as possible, but will never be “perfect” in the sense of the final desired output of a whole system.
The tracking stage must be designed to perform under “imperfect” input conditions.

If the downsampling method used erodes the blobs, small blobs will not be present in lower pyramid
levels, and matching hypotheses taking advantage of the apparent motion reduction will not be possible.
Instead, the following downsampling rule is used:

A graph pixel is set to point to the potential target corresponding to the the majority target (non-
background) among the four mapping pixels of the higher level.

Consequently, even an extremely isolated one pixel blob in the input resolution will be preserved in all
the pyramid levels. In general however, small blobs will frequently be merged with other close blobs because
of the reduction of resolution. A more elaborate scheme is then needed for establishing hypotheses (blob
matching) and to propagate and refine these hypotheses in the coarse-to-fine process. These aspects are
described in the next two sections.

Note that the minimum size and maximum apparent velocity of potential targets dictate the number of
resolution levels to use. In the most general case, complete (or close to complete) pyramids will be used
without significantly increasing the computational load, and without affecting the outcome of the tracking
when they are not strictly needed.

4.2 Blob matching

This section elaborates on the generation of target instance correspondence hypotheses across time, i.e.
blob matching. Once each level is initialized for the new graph time slice, starting at the coarsest level,
matching hypotheses are generated, resulting in the instantiation of links between known tracked targets in
the previous time slice, and potential targets in the current time slice. Hypotheses are given a measure of
confidence derived from a blob dissimilarity measure. Only plausible hypotheses are formed (by specifying
a threshold on the measure of confidence).
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As argued above, with the multi-resolution approach, a simple similarity based on overlap area yields
correct hypotheses in most cases for large slow blobs. The confidence measure used here is an approximation,
based on normalized area difference and centroid distance.

The description for a target instance (blob) al
t at level l and time t includes its area A(al

t) (pixel count)
and a centroid c(al

t), computed as:

c(al
t) =

1
A(al

t)

A(al
t)−1∑

i=0

Pi

where the Pi are the blob pixels.
Area difference, normalized by the size of the (new) target is the core of the measure of confidence. It

is modulated by the distance between the centroids. The size-based dissimilarity D(al
t, b

l
t−∆t) between two

target instances (blobs) at and bt−∆t, from the same resolution level l, in two consecutive time slices t and
t−∆t, is defined as:

S(al
t, b

l
t−∆t) =

∣∣∣∣∣
A(al

t)−A(bl
t−∆t)

A(al
t) + A(bl

t−∆t)

∣∣∣∣∣
Introducing the centroid distance

D(al
t, b

l
t−∆t) =

√
(c(al

t)− c(bl
t−∆t))2

and a maximum distance threshold Dm proportional to the level’s image dimensions

Dm =
width(l) + height(l)

2
yields the following confidence measure for the match:

K1(al
t, b

l
t−∆t) = 1− D(al

t, b
l
t−∆t)

Dm
S(al

t, b
l
t−∆t)

when D(al
t, b

l
t−∆t) ≤ Dm, and K1(al

t, b
l
t−∆t) = 0 otherwise.

Intuitively, the measure K1 favorizes matching of blobs, in consecutive frames, that are of similar size and
spatially close. This distance- and area-based confidence measure handles the relatively easy cases, but does
not perform satisfactorily when the blobs are far apart. It is therefore used only at the coarsest resolution
level, to form intial hypotheses. In all other levels, the description for a target al

t includes a velocity estimate
v(al

t) computed from the highest confidence hypothesis generated at the previous (coarser) level l + 1:

v(al
t) = 2

[
c(al+1

t )− c(âl+1
t−∆t)

]

where âl+1
t−∆t is the target instance corresponding to the highest confidence hypothesis for al+1

t .
The confidence measure computation at these levels is based on the relative size difference and distance

between the new blob’s centroid and the predicted target centroid position. The distance term used is now:

D̂(al
t, b

l
t−∆t) =

√
(c(al

t)− (c(bl
t−∆t) + ∆t v(bl

t−∆t)))2

and the corresponding confidence measure is:

K2(al
t, b

l
t−∆t) = 1− D̂(al

t, b
l
t−∆t)

Dm
S(al

t, b
l
t−∆t)

when D(al
t, b

l
t−∆t) ≤ Dm, and K2(al

t, b
l
t−∆t) = 0 otherwise.

After all hypotheses corresponding to a non null confidence between the blobs have been formed, some
blobs are left unexplained, i.e. no tracking hypothesis could be generated for them. They might correspond
to (1) first occurence in a new trajectory, (2) noise, or (3) blobs that the tracking algorithm failed to match
(lost trajectory). Case (1) is a natural occurence. Noise is inconsistent with trajectories of tracked objects,
and should be rejected. Case (3) should be addressed in the trajectory analysis stage (out of the scope of
this paper): if the object is tracked most of the time, an occasional lost match will result in a fragmented
trajectory. Further analysis should allow to reconnect trajectory fragments which have consistent properties.

The blob matching phase described above allows to generate only relevant hypotheses for a given level.
However, it is the multi-resolution aspect of the algorithm that allows to generate such hypotheses even
when the blobs to be matched are similar in appearance (in this case, in size) but far apart in the original
images.



IRIS-04-422 c©2004 ARJF 6

���������

�	
��
����
���	
����

�����
���
���������

�
	
���������
���

�����	�
�
����������	���

�	
��
�������	��

����������
	��

���
��
�������	
��	��

��	�����
�����������	��

�
����������	��

�� !�"#$#%&"

'()*+,-./0
1-023

4,()*5/+
6,(78

9$:#;<�

=<$>?%" @%A:B$C

Figure 3: conceptual graph for real-time color background model-based segmentation and multi-resolution
graph tracking application.

4.3 Hypothesis propagation and refinement

The fundamental principle behind the use of multi-resolution is to bring those blobs that must be matched,
but are far apart, closer together in image space, to the point where the corresponding match confidence K2

will pass the threshold. The success of the multi resolution approach is then contingent on the design and
application of a scheme for propagating and refining temporal relationship hypotheses down the pyramid
levels (coarse-to-fine process). Once hypotheses are generated at a given level, they are propagated to the
next finer level as follows. For each potential target at the new level:

• Propagate the best estimate hypothesis from the previous level.

• Form additional hypotheses at the current level, as described in the previous section. The new hy-
potheses might have higher confidence than the hypothesis inherited from the coarser level.

• Update velocity estimate using the highest confidence hypothesis at the current level.

Since each target in a level might correspond to several targets in the finer level (because of blob merging
during downsampling), new hypotheses might be generated. The process is repeated in each level until
hypotheses have been generated for the highest (original) resolution level.

5 Experimental results

5.1 Real-time implementation

The tracking algorithm was implemented using the MFSM open source architectural middleware [8]. MFSM
implements and supports an architectural style for distributed asynchronous parallel processing of generic
data streams, called SAI [9]. SAI and MFSM have been used for the design and implementation of various
experimental systems. A number of projects ranging from single stream automatic real-time video processing
to fully integrated distributed interactive systems mixing live video and graphics are presented in [10].

A real-time testbed system was designed in the SAI architectural style. Figure 3 shows the application
graph, color coded following SAI notation conventions: Volatile data, such as video frames, flows down
streams (in blue), and is created in processing centers called cells (green squares) from incoming volatile
data and relevant persistent data (process parameters). Persistent data, such as the background model for
segmentation, and the tracking graph), is held in shared repositories called sources (red disks).

The system was implemented using existing open source components for video input (either from a live
color camera or from a video file) and image display. Focusing on sequences taken from a fixed camera, a
standard adaptive color (RGB) model-based segmentation module (as described in [5]) was used to segment
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Figure 4: Object segmentation and tracking results in a PETS02 test sequence.

non-background objects in the incoming frames. The multi-resolution blob tracking algorithm described
above is at the heart of a tracking cell, that processes each incoming frame and associated segmentation data
(volatile data flowing down a stream) to update a tracking graph (persistent structure held in a source).
For testing and visualization purposes, a specific renderering cell was developed that computes, from each
incoming processed frame and the tracking graph, a composite image showing the blobs and their trajectory.
The resulting composite frames are displayed on screen. They may also be saved to disk using for example
an existing open source module.

The system performing capture (either from a live color camera or from a video file), segmentation,
blob tracking as described above, compositing and on-screen display, typically maintains a 30 fps (320x240)
throughput (or better) on state of the art dual-processor machines. Frame capture or loading from a file and
image display are source of significant variations in average (main) processor overall load.

5.2 Blob tracking: people, vehicles and balls

In all the tests presented here, the sequences were processed at original resolution of 320x240 pixels, with
the same parameters for segmentation and tracking (7 pyramid levels).

As can be expected, the algorithm gives state-of-the-art real-time performance for low-level blob tracking
in scenarios involving large, slow blobs (subject of course to the quality of the segmentation results). Figure
4 shows two frames from one of the PETS 2002 test sequences [2], with tracked blobs and their trajectories
(maximum confidence path on the tracking graph) over a few frames.
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Figure 5: Segmentation and tracking of the players and the ball in professional tennis broadcast video.

Since the strength of the algorithm is its ability to reliably track not only large slow blobs, but also
small fast blobs, it was also tested on more challenging sports scenarios: professional tennis and racquetball.
The blobs corresponding not only to the players, but also to the ball, are automatically segmented and
tracked, in real-time. Figure 5 is a frame from a tennis video with tracked blobs and their trajectories
(maximum confidence path on the tracking graph) over a few frames. The players are relatively slow, so
the corresponding displayed trajectories are often very short. The history buffer length (5 frames) for the
trajectory was set to make the ball most visible without cluttering the scene unnecessarily. The players
and the ball are correctly tracked. Occasionally, the ball can be lost. Two cases can be distinguished.
First, the ball might not be detected (no blob is produced by the segmentation) or the ball blob is merged
with another blob. This is a segmentation limitation. Second, the relationship between two ball blobs in
consecutive frames might not be recognized as the most likely at this low semantic level. In both cases,
the analysis of the tracking graph (next analysis level in our approach, and out of the scope of this paper),
should resolve these issues.

Figure 6 shows three frames extracted from a racquetball video. Note that racquetball being an indoor
court game, where players share a common space, there are more problems caused by shadows, occlusions
between the players and the ball, and light reflections on the glass wall. This particular court also has
a framed door, creating split or incorrectly connected player blobs in many instances. These issues are
specifically not addressed at the semantic level at which tracking is performed here. The most challenging
problem that can be addressed at this level is detection and tracking of the ball. The racquetball ball is
significantly smaller than the tennis ball, and it is so fast and produces so faint a signal in the images that
it is often impossible for a human not familiar with the game, or even with a particular video sequence, to
locate it in isolated individual frames. Yet the segmentation and blob tracking system performs as well as
can be expected given the quality of the input and the nature of the data.

Apart from being an enabling step for applications requiring higher level processing (e.g. surveillance),
tracking performed at such a low semantic level can already be useful in some particular application domains.
In videos captured by a static camera, simple background/foregound segmentation is already sufficient infor-
mation for efficient compression and for background modification or replacement. In tennis and racquetball
videos (taken by a static camera), tracking allows to singularize objects of interest, with evident benefits
for compression, but also for enhanced visualization. For example, tracing the ball trajectory in real-time
is a major help in following plays. Furthermore, intelligent downsampling allows to produce smaller videos
(e.g. for web publishing) that keep visible the important details (e.g. the ball). These downdsampled videos
also benefit from visualization data such as traced trajectories. The fact that, in the frames illustrating the
above results, the ball and its trajectory are still visible on a printout of this paper, supports help convey
the relevance of such applications.
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Figure 6: Segmentation and tracking of the players and the ball in professional racquetball video. The frames
on the left are the original composite output frames. At the right of each frame, a binary mask corresponding
to the players and the ball blobs and trajectories is shown, as manually extracted from the output frames,
in order to highlight the result data lost to publication artifacts (color to grey scale conversion, compression
and printing).

6 Summary and perspectives

This paper introduced a new real-time blob tracking algorithm. Use of multi resolution, following a coarse-
to-fine hypothesis generation, propagation and refinement process, allows to reliably track not only large,
slow blobs, but also small fast blobs as well. The algorithm has been implemented and integrated in an
extensible, real-time testbed system. It has been tested in a variety of surveillance scenarii (indoors and
outdoors, live and recorded) and has produced state-of-the art (or better) results on standard test datasets.
It has also been tested on professional tennis and racquetball videos, producing unprecedented real-time
tracking results on the ball.

The specifics of the algorithm as presented are characterized by their simplicity, making it especially
suitable for integration in real-time systems. More elaborate similarity measures could be used, involving
for example blob shape, color distribution, etc. Hypothesis propagation and refinement could certainly be
made significantly more complex. Such improvements would probably improve the quality (e.g. by reducing
further the number of hypotheses generated) and confidence of the data produced at this low level tracking
stage, and are certainly worth investigating.

Trying to address higher level issues (such as trajectory fragmentation and blob split/merge) at this stage
would then be very tempting. This work however is motivated by the belief that a robust system can be
achieved by combining a collection of “imperfect” modules, rather than in a one stage approach (with one
do-it-all algorithm). The presented algorithm is viewed as the second earliest stage in a robust video analysis
system, coming right after segmentation. The real-time testbed must be pushed up the semantic ladder, by
designing relevant algorithms and developing the corresponding modules.
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