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Abstract 

Representation and recognition of events in a video is 
important for a number of tasks such as video surveil-
lance, video browsing and content based video indexing. 
This paper describes the results of a “Challenge Project 
on Video Event Taxonomy” sponsored by the Advanced 
Research and Development Activity (ARDA) of the U.S. 
Government in the summer and fall of 2003. The project 
brought together more than 30 researchers in computer 
vision and knowledge representation and representatives 
of the user community. It resulted in the development of a 
formal language for describing an ontology of events, 
which we call VERL (Video Event Representation Lan-
guage) and a companion language called VEML (Video 
Event Markup Language) to annotate instances of the 
events described in VERL. This paper provides a summary 
of VERL and VEML as well as the considerations associ-
ated with the specific design choices.  

 

1. Introduction 
Representation and recognition of events in a video is 

important for a number of tasks such as video surveillance, 
video browsing and content based video indexing. It would 
be highly useful if the research community and the users 
agreed on a common representation for describing events 
as it would then allow easy interchange of video annota-
tions and sharing of video recognition modules among 
researchers. Advanced Research and Development Activ-
ity (ARDA) of the U.S. Government sponsored a “Chal-
lenge Project on Video Event Taxonomy” to further this 
goal in the summer and fall of 2003. The project brought 
together more than 30 researchers in computer vision and 
knowledge representation and representatives of the user 
community. It resulted in the development of a formal 
language for describing an ontology of events, which we 
call VERL (Video Event Representation Language) and a 
companion language called VEML (Video Event Markup 

Language) to annotate instances of the events described in 
VERL. This paper provides a summary of VERL and 
VEML as well as the considerations associated with the 
specific design choices. We hope that continued dialog and 
use of these tools will help in their further refinement and 
broader acceptance.  

 Our work draws on previous research in computer vi-
sion as well as in knowledge representation. In the com-
puter vision community, Ivanov and Bobick [5] suggested 
use of context-free grammars. Nevatia, Hongeng and Zhao 
[7] advocated use of hierarchical decomposition and sug-
gested use of single/multiple thread terminology. Vu, 
Bremond and Thonnat have developed similar concepts 
[8]. 

In the artificial intelligence literature, Narayanan [6] 
develops a formalism for the execution of actions and then 
applies it to several problems in linguistics, including the 
problem of representing different aspects, e.g., continuing 
or completed. More recently, this work was an important 
influence in the development of the process component of 
the web services language DAML-S [2]. 

There has been a great deal of research on temporal rea-
soning. Much of it has been based on the work of Allen 
and his colleagues [1] and, we incorporate that work as 
well.  Much of the work on temporal reasoning has fo-
cused on temporal constraint satisfaction (e.g., [3]) but we 
did not concentrate on this aspect in our project. 

2. Issues in the design of a Representation 
Language 

An event representation language needs to be able to 
represent the wide variety of events we observe in our 
everyday world. The representation needs to be formal but 
still be natural for human users. The representation lan-
guage needs to be flexible to allow new event classes to be 
added incrementally. The representation should be useful 
for annotating instances in a video, to allow causal and 
other inferences to be made from the annotations and be 
useful for automatic recognition of events from video data. 
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An ontology of events requires a means of describing 
the structure and function of events. The structure tells us 
how an event is composed of lower-level states and events. 
This structure can involve a single agent or multiple agents 
and objects. For a specific domain, composition has to 
start somewhere, so we need to state what the primitive 
events are. The function tells us about the roles an event 
plays in its environment, and how it, in turn, participates in 
larger-scale events. 

In our representation, we make the critical assumption 
that complex events can be decomposed into simpler 
events. Primitive events are the simplest type of events 
inferred directly from the observables in the video data. 
We define different types of compositions of events with 
sequencing (one after the other) being the most common. 
We further distinguish between single thread events where 
all sub-events can be placed in a linear order and multi-
thread events where at least some of the sub-events occur 
simultaneously; the former are typically performed by a 
single agent, the latter are typically, but not necessarily, 
performed by multiple agents.  

A caveat is in order regarding the terms “primitive” and 
“composite.” An event that is primitive from one perspec-
tive can be composite from another. We can regard walk-
ing from one point to another as a primitive component in 
a larger action. But from another point of view, walking is 
a complex action consisting of repetitions of moving one 
leg forward and then moving the other leg forward. Mov-
ing a leg forward can itself be viewed as lifting the foot, 
swinging the leg forward, and placing the foot down. If we 
had sensors on the muscles of the leg, we could break this 
down into even smaller scale events. In principle, this kind 
of analysis could be extended almost arbitrarily far down 
to lower levels or up to higher levels. 

If our hypothesis of decomposing complex events into 
simpler events is valid and if the number of primitive 
events is limited, we can overcome the complexity of 
representing the wide variety of events seen in the real 
world. It will allow us to not only share annotations but 
also the modules for recognizing primitive and composite 
events in a unified framework thus greatly speeding up the 
process of developing automated video event recognition 
systems. 

3.  A Video Event Representation Language 
(VERL) 

We now describe the formal Video Event Representa-
tion Language called VERL.  

3.1. Objects, States, and Events 
We start with the notion of objects and distinguish Mo-

bile Objects from Contextual Objects.  
Objects have properties or attributes; logically we can 

think of these as one-argument predications. They also 
stand in relations to other objects; we can think of these as 

predications with two or more arguments. Properties, at-
tributes, and relations can be thought of as states. The term 
“state” as used in computer science, means the aggregate 
of all the properties and relations of all relevant entities at 
a given moment in time. We can call this a w-state, for 
world state. In ordinary language, however, we talk about 
the state of a single entity that persists over time, e.g., the 
state of John’s being sick. We can call this an e-state, for 
entity state.  In this paper, when we refer to state, it is the 
e-state that we have in mind. 

An event is a change of state in an object. Thus when a 
rock rolls down a hill, its location changes. We can write: 
change(p(x),q(x)) or change(at(x,y),at(x,z)). 

Events generally have a time instant or interval where 
or during which they occur. In Section 3.8, we mention an 
ontology of time that can be imported into VERL.  
Events generally have locations as well, inherited from the 
locations of their participants. An ontology of location 
could also be imported. 

 States and events can cause other states and events. 
For example, a rock hitting a window can cause the win-
dow to shatter. We can have a predicate cause relating 
states or events (the cause) to other states or events (the 
effect), for example:  

cause(chang ( p1 (x ),q1 (x )),change ( p2 ( y),q2 ( y))) 
This says that a change of state in x from p1 being true to 
q1 being true causes a change in y from p2 being true to q2 
being true. An example of this would be when a baseball 
(x) changing its location (i.e., moving) causes a window 
(y) to change from being intact to being broken. 

3.2. Types 
We take an annotation to be a pair consisting of a thing 

in a VERL ontology and a designation of a location in the 
video data. 

 <thing, loc> 
The thing describes a state or event, or an entity such as a 
physical object. We will not say anything here about how 
the locations are to be specified.  

There are three basic types in the language. Everything 
is a thing. There are two types of things. The type ent 
encompasses entities, and generally may be thought of as 
physical objects, although in some applications it can be 
used more broadly. The type ev encompasses states and 
events, where by “state” we mean the ordinary language 
notion of e-state, not the computer science notion of w-
state. Normally, a person would be of type ent, and his or 
her running would be of type ev. The type hierarchy is 

thing 
/ \ 

ent ev 
It is possible in specific applications to expand this hi-

erarchy to more specific types. For example, one might 
introduce person and vehicle as subtypes of type ent. 
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We will refer loosely to things of type ent as entities 
and things of type ev as events.  

3.3. VERL Expressions 
Constants may be of any one of the three types. Vari-

ables may range over any one of the three types.  
A VERL expression (vexpr) is defined as follows: 
A constant or variable is a vexpr. 
 vexpr --> constant | variable  

For example, “John,” “X1,” “Fire-1,” and “E1” may all be 
vexprs. The type of the vexpr is the type of the constant or 
variable. Thus, “John” is an entity constant, “E1” will be 
an event variable if, for example, it refers to John’s run-
ning, and so on. 

A function symbol applied to the appropriate number of 
vexprs as arguments is a vexpr. 

 vexpr --> fct "(" [ vexpr { "," vexpr }* ] " )" 
(Square brackets [...] indicate something is optional; here 
the function may have no arguments. Curly brackets {...} 
group elements together. The Kleene star * means zero or 
more instances of.) The arguments must be of the right 
type. For example, if head-of is a function taking one en-
tity vexpr as its argument, then head-of (John) is a vexpr. 
The function determines what type of thing the result is. 
Thus, head-of would be an entity function and head-of 
(John)  would be an entity. 

A predicate symbol applied to the appropriate number 
of arguments is a vexpr. 

 vexpr --> pred "(" [vexpr { "," vexpr } * ] " )" 
The arguments must be of the right type. The result is 
always of type ev. For example, if change is a predicate 
symbol relating two things of type ev, then change (E1,E2) 
is a vexpr of type ev. 

A logical operator applied to the appropriate number of 
vexprs of type ev is a vexpr.  
vexpr --> "AND" "( " vexpr {"," vexpr } * " )" |  

          "OR" " (" vexpr { "," vexpr }* " ) " | 
          "IMPLY" " ( " vexpr "," vexpr " ) " | "NOT" " ( "  
                                        vexpr " ) " | 
          "EQUIV" " ( " vexpr "," vexpr " ) " 

AND and OR take one or more arguments. IMPLY and 
EQUIV take two arguments. NOT takes one argument. The 
result is always of type ev. 

Things of type ev can be events types or event tokens. 
NOT takes an event type as its argument.  Thus, if we say 
that NOT (run(John)) occurs at a location in the video 
data, then we are saying that no event of type (run(John)) 
occurs there. 

A constant or variable can be used as a label on a 
vexpr. 

 vexpr --> {constant | variable} ":" vexpr 
The resulting vexpr refers to the same thing as its con-

stituent vexpr and of course is of the same type. The label 
can then be used elsewhere to refer to that thing. If we did 

not have labels, ambiguities could result. Suppose twice in 
a file we refer to John’s running.  

 run(John) ... run(John) 
These may or may not be the same instance of running. If 
we say E1: run(John) ... E1, they definitely are the same 
instance. 

3.4. Defining Composite Events in VERL 
The basic operator for defining composite events is 

PROCESS. It takes a predication and a vexpr as its two 
arguments. The predication is a predicate applied to the 
appropriate number of arguments, where the arguments 
have an optional type specification.  
defn --> "PROCESS" "(" pred "(" [argspec {"," argspec}* ")" 

       ["," vexpr] ")" 
argspec --> [type] variable 
The second argument of PROCESS is optional, and if it is 
missing, it is assumed the process is primitive, i.e., in the 
given application it is directly implemented in software. 

For example, if we have the predicate located-at relat-
ing a thing to an entity, and a predicate change relating 
two things of type ev, then we can define the predicate 
move as follows: 

 PROCESS(move(thing x, ent y, ent z),  
            change(located-at(x,y),located-at(x,z))) 
That is, for a thing x to move from entity y to entity z, 

there is a change in x’s location from y to z. 
Labels defined inside a PROCESS statement are local to 

that PROCESS statement. Thus, if we write 
  PROCESS(move(thing x, ent y, ent z),  
        change(e1:located-at(x,y),e2:located-at(x,z))) 
We can't write “e1” or “e2” outside of the PROCESS 

statement and expect it to refer to the same thing it refers 
to inside the PROCESS statement.  

Three other operators can be used optionally in place of 
PROCESS—PRIMITIVE, SINGLE-THREAD, and MUL-
TITHREAD. PRIMITIVE can be used when there is no 
second argument to the PROCESS definition. SINGLE-
THREAD means that all constituent events in the defini-
tion happen sequentially, without overlap. MULTI-
THREAD can be used when there is no such constraint.  

For example, suppose located-at and change are primi-
tive predicates. Then a move event is a single-thread event. 
So we could rewrite the above example as 

 PRIMITIVE(located-at(thing x, ent y)) 
 PRIMITIVE(change(ev e1, ev e2)) 
 SINGLE-THREAD(move(thing x, ent y, ent z),  
            change(located-at(x,y),located-at(x,z)) 

3.5. Defining Subtypes  
The user may want to define subtypes of the types ent 

and ev. This can be done with the SUBTYPE operator. It 
takes two arguments, the name of the subtype and the 
name of the supertype.  

 SUBTYPE (type, type) 
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For example, to say that ent has subtypes mobile and im-
mobile and mobile has subtypes vehicle and human, we 
would write 

 SUBTYPE(mobile, ent) 
 SUBTYPE(immobile, ent) 
 SUBTYPE(vehicle, mobile) 
 SUBTYPE(human, mobile) 
Sibling types in the type hierarchy should be mutually 

exclusive. Thus, if you were to specify mobile and con-
tainer as subtypes of ent, you could not have mobile con-
tainers. It is often better to treat such concepts as proper-
ties rather than as types. In this case, the definitions would 
be 

 PRIMITIVE(container(ent x)) 
 PRIMITIVE(mobile(ent x)) 

3.6. Inference Rules  
In addition to annotations of specific events and defini-

tions of composite properties, relations, and events, we 
may also want to specify inference rules that allow us to 
draw conclusions from what we recognize in the data. For 
this we use the operator RULE, which takes two vexprs of 
type ev as its arguments. 

 RULE(vexpr,vexpr) 
A RULE is an implication; the first vexpr implies the sec-
ond. For example, suppose we define carry(x,y,a,b,t) (x 
carries y from a to b during time interval t), as x holds y 
during t and x moves from a to b during t.  

 PROCESS(carry(x,y,a,b,t),  
                  AND(hold(x, y,t), move(x,a,b,t))) 

Then if we want to say that when x carries y from a to b 
during t, y also moves from a to b during t, we can say 

 RULE(IMPLY(carry(x,y,a,b,t), move(y,a,b,t))) 
Variables in the antecedent of the implication will be 

interpreted as universally quantified; variables that occur 
in the consequent but not in the antecedent will be inter-
preted as existentially quantified. Thus,  

 RULE(p(x,z), q(x,y)) 
will be interpreted as  

 (A x,z)[p(x,z) --> (E y) q(x,y)]  

3.7. Control Structures in VERL  
Constructing complex events by composition of simpler 

events is central to our representation scheme. We can 
distinguish between single-thread events, in which only 
one thing is happening at a given time, and multithread 
events in which more than one thing is happening.  

 The most fundamental relation among component 
events is one of sequence. First one event happens and 
then another event happens. We can encode this if we reify 
events, i.e., treat events as individuals that can be referred 
to by constants and variables in our logic or language. The 
expression Sequence(e1,e2) describes the composite event 
consisting of event e1 happening followed by event e2 
happening; the events occur in sequence and do not over-

lap.  Longer sequences can be constructed, so we allow 
Sequence to take an arbitrary number of arguments:  

Sequence ( e1,e2,e3,...). 
The resulting vexpr describes the composite event consist-
ing of all the argument events occurring in sequence.  

But Sequence is not enough for recognizing higher-
level events. Walking is not best described as a sequence 
of moving the right foot forward, then moving the left foot 
forward, then moving the right foot forward, and so on. It 
is in fact an iteration or a loop of the sequence of two ac-
tions, moving one foot forward, and then moving the other 
foot forward. So an account of event composition requires 
the concept of loops or iteration.  

We can write Repeat-Until(e1,e2) to describe the com-
posite event of an iteration of event type e1 happening 
until state e2 holds.  Repeat-Until takes two things of 
type ev as its arguments. The resulting vexpr describes the 
composite event in which the first argument is repeated 
until the second argument holds or obtains. 

 Repeat-Until(e1, e2) 
Normally, e1 is the sort of event that changes the world in 
a way that affects whether or not e2 holds or obtains. 

A While-Do(e1,e2) construct is also part of VERL. 
While-Do takes two things of type ev as its arguments. The 
resulting vexpr describes the composite event in which the 
second argument is repeated as long as the first argument 
holds or obtains. 

 While-Do(e1,e2) 
While-Do can be defined in terms of other operators: 
 PROCESS(While-Do(ev e1, ev  e2), 
   Conditional(e1, 
      Repeat-Until(e2, NOT(e1)))) 
Alternation is also required. Suppose we are watching a 

man on an assembly line taking objects off the conveyer 
belt and tossing them into Bin A or Bin B. We may not be 
able to determine a better description of this action than as 
an iteration of alternative actions. We can express alterna-
tion in terms of the logical operator OR. 

Conditionals are required as well. We may be able to 
determine that the man is looking at the objects on the 
conveyer belt and tossing the round ones into Bin A and 
the square ones into Bin B. In this case, the best descrip-
tion of the composite event is as an iteration with a condi-
tional in the loop. The man is able to make observations 
and conditionalize his actions on what is observed.  

In VERL, Conditional takes two or three events as its 
arguments. It says that if the first argument holds or ob-
tains, then the second argument happens; otherwise the 
third argument happens, if there is a third argument. 

 Conditional(e1, e2) 
 Conditional(e1, e2, e3) 

The resulting vexpr describes a piece of behavior that has 
been recognized to operate in this fashion. 

This completes the specification of the syntax of 
VERL. We next present a class of predicates that are very 
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useful in building up and relating complex structured 
events. 

3.8. Temporal Relations 
Representing the temporal relations among component 

events is crucial in recognizing composite events. For most 
applications, describing the relations among the temporal 
intervals occupied by the component events, according to 
Allen’s interval algebra (Allen and Ferguson, 1997), is 
sufficient. This is because agents are responding primarily 
to the actions of other agents or the behavior of moving 
objects. Even in a case where one of the threads is pre-
cisely timed, such as a conveyor belt in a factory, the 
worker is responding primarily to the appearance of the 
part rather than to the passage of a certain amount of time. 

Times come in two varieties—instants and intervals. 
Thus, 

 SUBTYPE(temporal-entity, thing) 
 SUBTYPE(instant, temporal-entity) 
 SUBTYPE(interval, temporal-entity) 
Of two distinct instants, one is before the other. The 

predicate after is the inverse of before.  
 before(t1,t2), after(t1,t2), t1=t2 
An instant t and an interval T can be in several possible 

relations: 
 begins(t,T), inside(t,T), ends(t,T) 

It may be that none of these is true. 
There are six possible basic relations that can obtain be-

tween two intervals:  
 before(T1,T2), meets(T1,T2), overlaps(T1,T2),  
begins(T1,T2), contains(T1,T2), ends(T1,T2) 

These form the basis of Allen’s interval algebra. They can 
be defined in terms of begins, inside, and ends relations 
between instants and intervals. 

There are two possible relations between events and 
times: Some events happen instantaneously. In this case, 
we say 

 at-time(e,t)  
where t is an instant. Some events happen across intervals, 
with a duration. In this case we say 

 during(e,T)  
where T is an interval.  

The OWL-Time ontology [4] provides a rich elabora-
tion of these concepts and includes treatments of measures 
of duration, clock and calendar terms, and temporal aggre-
gates. In some cases, this richer theory of time is required. 

Many actions are rhythmic, and recognizing this is an 
important part of recognizing the higher-level event. A 
rhythmic event can be characterized as an iterative event in 
which the iterations occupy time intervals of equal dura-
tion. Rhythm is often used to coordinate multithread itera-
tive action. Finally, it is sometimes necessary to relate 
events to the clock and calendar.  

 

3.9. The Semantics of VERL 
One of our design goals was to give VERL expressions 

a clear semantics, by translating them into equivalent first 
order logic sentences. In most cases, the semantics should 
be obvious, but the are several hidden subtleties. We are 
unable to include the details of this semantics due to space 
limitations but expect to document them in a forthcoming 
report.  

4. An Example: An Abstract Ontology of 
Mobile Objects 

In this section, we give an example of devising an on-
tology for a particular, though abstract, domain—the do-
main of mobile objects, such as one that surveillance ap-
plications would be concerned about. This will illustrate 
some of the concepts discussed above and the approach to 
constructing an ontology for an application. 

In surveillance applications, there will be many objects, 
but we are primarily interested in Mobile Objects; we will 
restrict these to objects that are capable, insofar as we can 
tell, of independent motion. People, animals, and cars are 
examples. There are also Portable Objects. These are ob-
jects that a mobile object can pick up and carry to another 
location, but they are not necessarily capable of moving of 
their own accord. A toddler is a portable object that is 
capable of independent motion; a book is a portable object 
that isn’t. 

Among the contextual objects are containers. By this 
we mean anything that something else can be inside or 
outside of. Rooms, trash containers, and fenced-in areas 
are all containers. 

For each of the categories Object, Mobile Object, Con-
tainer, and Portable Object, we list the properties they have 
and the relations they can participate in. By considering 
the changes in these properties and relations, we arrive at 
the primitive events that can happen to them 

A Mobile Object has a velocity and a direction. The 
primitive events are: 

 
Speed-Up Change from a lower to a higher velocity 
Slow-
Down 

Change from a higher to a lower velocity 

Start Speed-Up when the start velocity is 0 
Stop Slow-Down when the finish velocity is 0 
Turn-
Right 

Clockwise change in direction  

Turn-Left Counter-clockwise change in directions 
Two Objects can be in a “distance-from” relation. 

When at least one of those Objects is a Mobile Object, this 
relation can change. This gives rise to the following primi-
tive events: 

Move-Toward(A,B) A moves and changes the distance 
from B to a smaller value 

Move-Away-
From(A,B) 

A moves and changes the distance 
from B to a larger value 
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When the distance between A and B is 0, we can say A 
is “at” B. We can define a “move” event as a change of 
state from A being at B to A being at some other object C. 

It may be useful to have a further notion of “Move-
Directly-Toward.” Someone walking obliquely past a 
doorway will have a period in which they are moving 
closer to it, but we might want to draw different inferences 
in this case and the case where the person moves directly 
toward it.  

It may also be useful to have a notion of one object be-
ing “near” another object. This is generally a functional 
notion—near enough for some purpose. In a particular 
domain, it may be possible to define this precisely in terms 
of distance. 

Containers have Portals that can be open or closed. A 
Mobile Object A and a Container B can be in one of two 
relations—inside(A,B) and outside(A,B). This gives rise to 
two primitive events: 

Enter(A,B) A changes from outside B to inside B. 
Exit(A,B) A changes from inside B to outside B. 

For either of these events to happen, the Portal must be 
open, and A must go through (be at) the portal during the 
state change. 

The two possible relations between Mobile Objects and 
Portable Objects are “hold” and its negation. The primitive 
events are  

Pick-Up(A,B) There is a change from A not holding B 
to A holding B. 

Put-Down(A,B) There is a change from A holding B to A 
not holding B. 

In terms of these, we can define a “carry” event as con-
sisting of  
Sequence(Pick-Up(A,B), AND(Hold(A,B), Move(A,C,D)), 
Put-Down(A,B)) 

When a Portable Object is held by a Mobile Object, 
they are constrained to move together. A “take-from” 
action is a change from a portable object being held by one 
object to its being held by another. An “exchange” consists 
of two reciprocal take-from actions.  

Events are possible involving two Mobile Objects, but 
these can be decomposed into primitive events we have 
already presented. For example, when two mobile entities 
approach each other, they are each moving toward the 
other.  

5. Domain Ontologies 
During the workshop participants used VERL to de-

velop ontologies in the domains of physical security and 
meeting videos domains to highlight commonalities and 
differences.  

5.1. Physical Security Domain 
Monitoring events for physical security is an important 

application of video analysis.  This domain also offers a 
good test of the ontology framework because events of 

interest are defined almost directly in terms of observable 
activities. 

The researchers participating in this group naturally di-
vided up into six subgroups, each exploring a different 
sub-domain, such as bank monitoring, outdoor surveil-
lance, and railroad crossing monitoring.  Initially, each 
sub-group defined its own set of objects, relations, primi-
tive events, and complex events, which were combined to 
form complex events of interest to the users.  Later, 
common elements were found between the sub-domains 
and used to construct the beginnings of a common ontol-
ogy.  

The definitions include more than 100 primitive and 
composite events.  Clearly, more events could be defined 
and more sub-domains included.  In particular, more 
events that require coordination between multiple actors 
over extended periods of time (perhaps days) were not 
considered.  Nonetheless, we feel that the defined events 
helped validate the power of the representation framework 
and provide a set of definitions that should be usable by 
other researchers. 

5.2. Meeting Domain 
The domain of meeting and conference videos is con-

siderably more complex than the security domain in the 
sense that events of interest take place at many levels of 
granularity, plus audio and text play important roles.  To 
limit complexity, we decided not to represent the linguistic 
content.  

Meetings can be analyzed at four levels: 
1. The who, what, where, and when of the meeting, 

the sort of information that appears on a seminar 
announcement 

2. The type of meeting, such as presentations and 
roundtable discussions 

3. The “everyday rules of order” – how the 
contributions of individual members cooperate to 
perform group actions, e.g., bring up and dispense 
with topics, make decisions, and assign tasks  

4. The communicative actions of individuals, such 
as utterances and gestures, and communicative 
complexes of small sets of individuals, such as 
“F-formations” 

Our ontology describes an initial approach to levels 1, 
2, and 4.  Level 1 is fairly straightforward to characterize.  
Level 2 is a matter of explicit convention that members of 
our culture are familiar with, and thus it is also fairly 
straightforward to formalize.  Level 4 is a very complex 
domain and is the locus of a great deal of good research.  
We have only been able to sketch some elementary aspects 
of this level.  Level 3 is a difficult and little-studied area, 
and we have had to leave this for future work. 
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6. Markup Language (VEML) 
We have defined a Video Event Markup Language 

(VEML) for representing specific instances of objects and 
events detected in video streams so that they can be ex-
changed between research groups and analysis techniques.  
VEML encodes such things as the name of an event, its 
type, the beginning and ending times of it, and the actors 
participating in it.  This information is encoded in XML 
and written to a file in a standard way for use by other 
computer programs. 

Figure 1 shows the relationship of VEML to VERL.  
VERL is essentially a programming language for describ-
ing generic events, such as sneaking in a door behind 
someone or stealing something, as compositions of other 
events.  VEML encodes instances of objects and events 
detected in video data in XML.  In particular, VEML is 
designed to encode five items for a set of events that have 
been automatically extracted or interactively annotated in a 
set of stream data: 
 

• the ontology used (i.e., a pointer or file reference 
to the VERL definition) 

• the data streams involved 
• the context, such as the geometric structure of 

the local scene 
• the objects, such as people and suitcases, that 

participate in the events 
• the events themselves, such as approach, grasp, 

and sneak-in 
The next section contains an example of a VEML file that 
describes a set of objects and events associated with a 
person entering a locked facility by tailgating another 
perons.  

{Note that we allow multiple synchronized video data 
sets and audio tracks to be examined and annotated in 
parallel, although the majority of our initial examples 
involve only a single video stream.} 

7. An Example of VERL and VEML 
In this section, we present a sample set of VERL defini-

tions that leads up to a description of a tailgating event, 
and then present a portion of a VEML file that encodes 
occurrences of these events detected in a video. 

7.1. Sample VERL Definitions 
// subtypes of entities  {a partial taxonomy of ents for 
// this example} 
SUBTYPE(person, ent) 
SUBTYPE(facility, ent) 
SUBTYPE(portal, ent) 
SUBTYPE(door, portal) 
SUBTYPE(window, portal) 
 
 

// primitive properties of ents 
// {Note:  if you were to specify mobile and container 
// as subtypes of ent, you could not have mobile 
// containers.}  
PRIMITIVE(container(ent x))   
PRIMITIVE(mobile(ent x)) 
PRIMITIVE(open(portal x)) 
PRIMITIVE(closed(portal x)) 
PRIMITIVE(locked(portal x)) 
PRIMITIVE(unlocked(portal x)) 
PRIMITIVE(portal-of(portal p, container c))  
PRIMITIVE(inside-of(ent x, ent y))   // x is on the inside 
   // of the container y 
PRIMITIVE(near(ent x, ent y)   // (= close) x is within 
   // some distance of y, where the distance is context 
   // dependent. 
PRIMITIVE(behind(ent x, ent y)) // x is on the same side 
   // of y as the back of y. 
   // Defined only when y has a "front" //and "back", 
   // such as a person or vehicle. 
PRIMITIVE(behind(ent x, ent y, point observer-position))  
   // x is on the opposite side of y as observer-position 
   // ("behind" the tree means that //the person is on the 
   // other side of the tree rom the observer). 
 
 // rules associated with ents and evs 
RULE(IMPLY(person(x), mobile(x))  // people are 
   // mobile 
RULE(IMPLY(facility(x), container(x))   // all facilities 
   // are containers 
RULE(IMPLY(portal(p), AND(container(c), 

    portal-of(p, c)))) 
RULE(IMPLY(AND(portal-of(p, c), open(p)), open(c))) 
// portal open => container 
 
// processes describing relationships, events, etc. 
PROCESS(far(ent x, ent y),  NOT(near(x, y))) 
PROCESS(outside-of (ent x, ent y),   

NOT(inside-of (x, y))) 
 

PROCESS(approach(ent x, ent y),  
cause(x, change(far(x,y), near(x, y)))) 

PROCESS(leave(ent x, ent y),   
cause(x, change(near(x, y), far(x, y)))) 

PROCESS(exit(ent x, ent y), change(inside-of(x,y)), 
      outside-of(x,y))) 
PROCESS(enter(ent x, ent y), change(outside-of(x,y)), 
      inside-of(x,y))) 
PROCESS(unlock(portal p), change(locked(p)), 
      unlocked(p))) 
PROCESS(open(portal p), change(closed(p)), open(p))) 
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// definition of a TAILGATING event x is near y when 
// they get access to a facility, & then x enters behind y 
SINGLE-THREAD(tailgate(ent x, ent y, facility f), 
                        AND (portal-of(door, f)) 

 Sequence( 
approach(y, door), 
unlock(y, door), 
open(y, door), 
AND(enter(y, f), near(x, y)), 
NOT(unlock(x, door)), 
enter(x, f))) 

7.2. Portion of a VEML File Encoding Events 
Detected in a Specific Video 

A VEML file, such as the one below, encodes the 
global information about the data and scene, and then 
describes the objects and events detected in the data.  In 
this example, there are four objects of interest: 

1. Person1, who unlocks the door and enters the 
facility legitimately 

2. Person2, who enters by following Person1 
through the door 

3. Facility1, which is the locked container that the 
two people enter 

4. Door1, which is the door through which the two 
people enter the facility 

There may be several events detected and encoded in 
the file, but some of the key ones for this example are 

1. Person1 approaches Door1 
2. Person2 follows Person2 
3. Person1 unlocks Door1 
4. Person2 enters Door1 by tailgating Person1 

 
<scene> 
 

<ontology> 
<source>…/ontologies/physicalSecurity
.verl</source> 
</ontology> 
 
<streams> 
  <video id="sneak02"> 
    <offset unit="frames">0</offset> 
    <duration unit="frames">450 
    </duration> 
    <samplingRate>30</samplingRate> 
    <source>/home/dvtt2/IU/video/ 
    data/sneak02/sneak02.sriv 
    </source> 
  </video> 
</streams> 
 
<context> 
<!-- To Be Determined --> 
</context> 

 
<objects> 
  <object type="PERSON" id="OBJECT1"> 
    <property name="name" value=  
    "Person1"/> 
    <tracks></tracks> 
  </object> 
  <object type="PERSON" id="OBJECT2"> 
    <property name="name" value= 
    "Person2"/> 
    <tracks></tracks> 
  </object> 
  <object type="FACILITY" id= 
    "OBJECT3"> 
    <property name="name" value= 
    "Facility1"/> 
    <tracks></tracks> 
  </object> 
  <object type="ENTRANCE" id= 
    "OBJECT4"> 
    <property name="name" value= 
    "Door1"/> 
    <tracks></tracks> 
  </object> 
</objects> 
 
<events> 
  <event type="APPROACH" id="EVENT1"> 
    <begin unit="frames">136</begin> 
    <end unit="frames">247</end> 
    <property name="name" value= 
    "Approach1"/> 
    <argument argNum="1" value= 
    "Person1"/> 
    <argument argNum="2" value= 
    "Door1"/> 
  </event> 
  <event type="FOLLOW" id="EVENT2"> 
    <begin unit="frames">177</begin> 
    <end unit="frames">247</end> 
    <property name="name" value= 
    "Follow1"/> 
    <argument argNum="1" value= 
    "Person2"/> 
    <argument argNum="2" value= 
    "Person1"/> 
  </event> 
  <event type="UNLOCK" id="EVENT3"> 
    <begin unit="frames">260</begin> 
    <end unit="frames">332</end> 
    <property name="name" value= 
    "Unlock1"/> 
    <argument argNum="1" value= 
    "Person1"/> 
    <argument argNum="2" value= 
    "Door1"/> 
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  </event> 
  … 
  <event type="TAILGATE" id= 
    "EVENT12"> 
    <begin unit="frames">177</begin> 
    <end unit="frames">508</end> 
    <property name="name" value= 
    "Tailgate1"/> 
    <argument argNum="1" value= 
    "Person1"/> 
    <argument argNum="2" value= 
    "Person2"/> 
    <argument argNum="3" value= 
    "Facility1"/> 
  </event> 
</events> 

 
</scene> 

8. Summary 
We believe that we have made significant progress in 

defining an event ontology framework, a formal represen-
tation language, and specific ontologies for the security 
and meeting domains.  We believe that use of such on-
tologies will greatly help in advancing research in event 
recognition from videos by allowing researchers to share 
their results in a unified framework.  In addition, VEML 
can help in exchanging annotated videos and in evaluating 
the results of automated analysis as outlined in our evalua-
tion document.  Another important benefit of the whole 
challenge project has been in bringing large segments of 
the research community together and forming a consensus 
on foundational issues. 

In spite of the progress made, much remains to be done.  
For example, the framework needs to be exercised on 
much more complex events and the ontologies for specific 
domains need to be expanded significantly.  We have not 
addressed ontologies for domains such as broadcast news 
video where the content tends to be largely unrestricted.  
For videos containing speech or text, integration with 
linguistic ontologies also needs to be explored. 

The event ontologies need to be embedded in a standard 
knowledge representation framework, such as OWL or 
Semantic Web Rule Language (SWRL), to exploit the 
inference engines available in that community.  Plus, 
tools need to be developed to efficiently annotate videos 
and check their consistency with an underlying ontology.  
We hope that the broader research community will take 
interest in exploring these issues. 
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Figure 1. A diagram of the relationship between VERL and VEML. 


