
 1

An Ontology for Video Event Representation

Ram Nevatia, Jerry Hobbs and Bob Bolles
Institute for Robotics and Intelligent

Systems
University of Southern California

Los Angeles, CA 90089-0273
nevatia@iris.usc.edu

USC Information Sciences Institute
4676 Admiralty Wa,

Marina del Rey, CA 90292
hobbs@isi.edu

SRI International
 333 Ravenswood Avenue

Menlo Park, CA 94040
bolles@ai.sri.com

Abstract

Representation and recognition of events in a video is
important for a number of tasks such as video surveil-
lance, video browsing and content based video indexing.
This paper describes the results of a “Challenge Project
on Video Event Taxonomy” sponsored by the Advanced
Research and Development Activity (ARDA) of the U.S.
Government in the summer and fall of 2003. The project
brought together more than 30 researchers in computer
vision and knowledge representation and representatives
of the user community. It resulted in the development of a
formal language for describing an ontology of events,
which we call VERL (Video Event Representation Lan-
guage) and a companion language called VEML (Video
Event Markup Language) to annotate instances of the
events described in VERL. This paper provides a summary
of VERL and VEML as well as the considerations associ-
ated with the specific design choices.

1. Introduction
Representation and recognition of events in a video is

important for a number of tasks such as video surveillance,
video browsing and content based video indexing. It would
be highly useful if the research community and the users
agreed on a common representation for describing events
as it would then allow easy interchange of video annota-
tions and sharing of video recognition modules among
researchers. Advanced Research and Development Activ-
ity (ARDA) of the U.S. Government sponsored a “Chal-
lenge Project on Video Event Taxonomy” to further this
goal in the summer and fall of 2003. The project brought
together more than 30 researchers in computer vision and
knowledge representation and representatives of the user
community. It resulted in the development of a formal
language for describing an ontology of events, which we
call VERL (Video Event Representation Language) and a
companion language called VEML (Video Event Markup

Language) to annotate instances of the events described in
VERL. This paper provides a summary of VERL and
VEML as well as the considerations associated with the
specific design choices. We hope that continued dialog and
use of these tools will help in their further refinement and
broader acceptance.

 Our work draws on previous research in computer vi-
sion as well as in knowledge representation. In the com-
puter vision community, Ivanov and Bobick [5] suggested
use of context-free grammars. Nevatia, Hongeng and Zhao
[7] advocated use of hierarchical decomposition and sug-
gested use of single/multiple thread terminology. Vu,
Bremond and Thonnat have developed similar concepts
[8].

In the artificial intelligence literature, Narayanan [6]
develops a formalism for the execution of actions and then
applies it to several problems in linguistics, including the
problem of representing different aspects, e.g., continuing
or completed. More recently, this work was an important
influence in the development of the process component of
the web services language DAML-S [2].

There has been a great deal of research on temporal rea-
soning. Much of it has been based on the work of Allen
and his colleagues [1] and, we incorporate that work as
well. Much of the work on temporal reasoning has fo-
cused on temporal constraint satisfaction (e.g., [3]) but we
did not concentrate on this aspect in our project.

2. Issues in the design of a Representation
Language

An event representation language needs to be able to
represent the wide variety of events we observe in our
everyday world. The representation needs to be formal but
still be natural for human users. The representation lan-
guage needs to be flexible to allow new event classes to be
added incrementally. The representation should be useful
for annotating instances in a video, to allow causal and
other inferences to be made from the annotations and be
useful for automatic recognition of events from video data.

 2

An ontology of events requires a means of describing
the structure and function of events. The structure tells us
how an event is composed of lower-level states and events.
This structure can involve a single agent or multiple agents
and objects. For a specific domain, composition has to
start somewhere, so we need to state what the primitive
events are. The function tells us about the roles an event
plays in its environment, and how it, in turn, participates in
larger-scale events.

In our representation, we make the critical assumption
that complex events can be decomposed into simpler
events. Primitive events are the simplest type of events
inferred directly from the observables in the video data.
We define different types of compositions of events with
sequencing (one after the other) being the most common.
We further distinguish between single thread events where
all sub-events can be placed in a linear order and multi-
thread events where at least some of the sub-events occur
simultaneously; the former are typically performed by a
single agent, the latter are typically, but not necessarily,
performed by multiple agents.

A caveat is in order regarding the terms “primitive” and
“composite.” An event that is primitive from one perspec-
tive can be composite from another. We can regard walk-
ing from one point to another as a primitive component in
a larger action. But from another point of view, walking is
a complex action consisting of repetitions of moving one
leg forward and then moving the other leg forward. Mov-
ing a leg forward can itself be viewed as lifting the foot,
swinging the leg forward, and placing the foot down. If we
had sensors on the muscles of the leg, we could break this
down into even smaller scale events. In principle, this kind
of analysis could be extended almost arbitrarily far down
to lower levels or up to higher levels.

If our hypothesis of decomposing complex events into
simpler events is valid and if the number of primitive
events is limited, we can overcome the complexity of
representing the wide variety of events seen in the real
world. It will allow us to not only share annotations but
also the modules for recognizing primitive and composite
events in a unified framework thus greatly speeding up the
process of developing automated video event recognition
systems.

3. A Video Event Representation Language
(VERL)

We now describe the formal Video Event Representa-
tion Language called VERL.

3.1. Objects, States, and Events
We start with the notion of objects and distinguish Mo-

bile Objects from Contextual Objects.
Objects have properties or attributes; logically we can

think of these as one-argument predications. They also
stand in relations to other objects; we can think of these as

predications with two or more arguments. Properties, at-
tributes, and relations can be thought of as states. The term
“state” as used in computer science, means the aggregate
of all the properties and relations of all relevant entities at
a given moment in time. We can call this a w-state, for
world state. In ordinary language, however, we talk about
the state of a single entity that persists over time, e.g., the
state of John’s being sick. We can call this an e-state, for
entity state. In this paper, when we refer to state, it is the
e-state that we have in mind.

An event is a change of state in an object. Thus when a
rock rolls down a hill, its location changes. We can write:
change(p(x),q(x)) or change(at(x,y),at(x,z)).

Events generally have a time instant or interval where
or during which they occur. In Section 3.8, we mention an
ontology of time that can be imported into VERL.
Events generally have locations as well, inherited from the
locations of their participants. An ontology of location
could also be imported.

 States and events can cause other states and events.
For example, a rock hitting a window can cause the win-
dow to shatter. We can have a predicate cause relating
states or events (the cause) to other states or events (the
effect), for example:

cause(chang (p1 (x),q1 (x)),change (p2 (y),q2 (y)))
This says that a change of state in x from p1 being true to
q1 being true causes a change in y from p2 being true to q2
being true. An example of this would be when a baseball
(x) changing its location (i.e., moving) causes a window
(y) to change from being intact to being broken.

3.2. Types
We take an annotation to be a pair consisting of a thing

in a VERL ontology and a designation of a location in the
video data.

 <thing, loc>
The thing describes a state or event, or an entity such as a
physical object. We will not say anything here about how
the locations are to be specified.

There are three basic types in the language. Everything
is a thing. There are two types of things. The type ent
encompasses entities, and generally may be thought of as
physical objects, although in some applications it can be
used more broadly. The type ev encompasses states and
events, where by “state” we mean the ordinary language
notion of e-state, not the computer science notion of w-
state. Normally, a person would be of type ent, and his or
her running would be of type ev. The type hierarchy is

thing
/ \

ent ev
It is possible in specific applications to expand this hi-

erarchy to more specific types. For example, one might
introduce person and vehicle as subtypes of type ent.

 3

We will refer loosely to things of type ent as entities
and things of type ev as events.

3.3. VERL Expressions
Constants may be of any one of the three types. Vari-

ables may range over any one of the three types.
A VERL expression (vexpr) is defined as follows:
A constant or variable is a vexpr.
 vexpr --> constant | variable

For example, “John,” “X1,” “Fire-1,” and “E1” may all be
vexprs. The type of the vexpr is the type of the constant or
variable. Thus, “John” is an entity constant, “E1” will be
an event variable if, for example, it refers to John’s run-
ning, and so on.

A function symbol applied to the appropriate number of
vexprs as arguments is a vexpr.

 vexpr --> fct "(" [vexpr { "," vexpr }*] ")"
(Square brackets [...] indicate something is optional; here
the function may have no arguments. Curly brackets {...}
group elements together. The Kleene star * means zero or
more instances of.) The arguments must be of the right
type. For example, if head-of is a function taking one en-
tity vexpr as its argument, then head-of (John) is a vexpr.
The function determines what type of thing the result is.
Thus, head-of would be an entity function and head-of
(John) would be an entity.

A predicate symbol applied to the appropriate number
of arguments is a vexpr.

 vexpr --> pred "(" [vexpr { "," vexpr } *] ")"
The arguments must be of the right type. The result is
always of type ev. For example, if change is a predicate
symbol relating two things of type ev, then change (E1,E2)
is a vexpr of type ev.

A logical operator applied to the appropriate number of
vexprs of type ev is a vexpr.
vexpr --> "AND" "(" vexpr {"," vexpr } * ")" |

 "OR" " (" vexpr { "," vexpr }* ") " |
 "IMPLY" " (" vexpr "," vexpr ") " | "NOT" " ("
 vexpr ") " |
 "EQUIV" " (" vexpr "," vexpr ") "

AND and OR take one or more arguments. IMPLY and
EQUIV take two arguments. NOT takes one argument. The
result is always of type ev.

Things of type ev can be events types or event tokens.
NOT takes an event type as its argument. Thus, if we say
that NOT (run(John)) occurs at a location in the video
data, then we are saying that no event of type (run(John))
occurs there.

A constant or variable can be used as a label on a
vexpr.

 vexpr --> {constant | variable} ":" vexpr
The resulting vexpr refers to the same thing as its con-

stituent vexpr and of course is of the same type. The label
can then be used elsewhere to refer to that thing. If we did

not have labels, ambiguities could result. Suppose twice in
a file we refer to John’s running.

 run(John) ... run(John)
These may or may not be the same instance of running. If
we say E1: run(John) ... E1, they definitely are the same
instance.

3.4. Defining Composite Events in VERL
The basic operator for defining composite events is

PROCESS. It takes a predication and a vexpr as its two
arguments. The predication is a predicate applied to the
appropriate number of arguments, where the arguments
have an optional type specification.
defn --> "PROCESS" "(" pred "(" [argspec {"," argspec}* ")"

 ["," vexpr] ")"
argspec --> [type] variable
The second argument of PROCESS is optional, and if it is
missing, it is assumed the process is primitive, i.e., in the
given application it is directly implemented in software.

For example, if we have the predicate located-at relat-
ing a thing to an entity, and a predicate change relating
two things of type ev, then we can define the predicate
move as follows:

 PROCESS(move(thing x, ent y, ent z),
 change(located-at(x,y),located-at(x,z)))
That is, for a thing x to move from entity y to entity z,

there is a change in x’s location from y to z.
Labels defined inside a PROCESS statement are local to

that PROCESS statement. Thus, if we write
 PROCESS(move(thing x, ent y, ent z),
 change(e1:located-at(x,y),e2:located-at(x,z)))
We can't write “e1” or “e2” outside of the PROCESS

statement and expect it to refer to the same thing it refers
to inside the PROCESS statement.

Three other operators can be used optionally in place of
PROCESS—PRIMITIVE, SINGLE-THREAD, and MUL-
TITHREAD. PRIMITIVE can be used when there is no
second argument to the PROCESS definition. SINGLE-
THREAD means that all constituent events in the defini-
tion happen sequentially, without overlap. MULTI-
THREAD can be used when there is no such constraint.

For example, suppose located-at and change are primi-
tive predicates. Then a move event is a single-thread event.
So we could rewrite the above example as

 PRIMITIVE(located-at(thing x, ent y))
 PRIMITIVE(change(ev e1, ev e2))
 SINGLE-THREAD(move(thing x, ent y, ent z),
 change(located-at(x,y),located-at(x,z))

3.5. Defining Subtypes
The user may want to define subtypes of the types ent

and ev. This can be done with the SUBTYPE operator. It
takes two arguments, the name of the subtype and the
name of the supertype.

 SUBTYPE (type, type)

 4

For example, to say that ent has subtypes mobile and im-
mobile and mobile has subtypes vehicle and human, we
would write

 SUBTYPE(mobile, ent)
 SUBTYPE(immobile, ent)
 SUBTYPE(vehicle, mobile)
 SUBTYPE(human, mobile)
Sibling types in the type hierarchy should be mutually

exclusive. Thus, if you were to specify mobile and con-
tainer as subtypes of ent, you could not have mobile con-
tainers. It is often better to treat such concepts as proper-
ties rather than as types. In this case, the definitions would
be

 PRIMITIVE(container(ent x))
 PRIMITIVE(mobile(ent x))

3.6. Inference Rules
In addition to annotations of specific events and defini-

tions of composite properties, relations, and events, we
may also want to specify inference rules that allow us to
draw conclusions from what we recognize in the data. For
this we use the operator RULE, which takes two vexprs of
type ev as its arguments.

 RULE(vexpr,vexpr)
A RULE is an implication; the first vexpr implies the sec-
ond. For example, suppose we define carry(x,y,a,b,t) (x
carries y from a to b during time interval t), as x holds y
during t and x moves from a to b during t.

 PROCESS(carry(x,y,a,b,t),
 AND(hold(x, y,t), move(x,a,b,t)))

Then if we want to say that when x carries y from a to b
during t, y also moves from a to b during t, we can say

 RULE(IMPLY(carry(x,y,a,b,t), move(y,a,b,t)))
Variables in the antecedent of the implication will be

interpreted as universally quantified; variables that occur
in the consequent but not in the antecedent will be inter-
preted as existentially quantified. Thus,

 RULE(p(x,z), q(x,y))
will be interpreted as

 (A x,z)[p(x,z) --> (E y) q(x,y)]

3.7. Control Structures in VERL
Constructing complex events by composition of simpler

events is central to our representation scheme. We can
distinguish between single-thread events, in which only
one thing is happening at a given time, and multithread
events in which more than one thing is happening.

 The most fundamental relation among component
events is one of sequence. First one event happens and
then another event happens. We can encode this if we reify
events, i.e., treat events as individuals that can be referred
to by constants and variables in our logic or language. The
expression Sequence(e1,e2) describes the composite event
consisting of event e1 happening followed by event e2
happening; the events occur in sequence and do not over-

lap. Longer sequences can be constructed, so we allow
Sequence to take an arbitrary number of arguments:

Sequence (e1,e2,e3,...).
The resulting vexpr describes the composite event consist-
ing of all the argument events occurring in sequence.

But Sequence is not enough for recognizing higher-
level events. Walking is not best described as a sequence
of moving the right foot forward, then moving the left foot
forward, then moving the right foot forward, and so on. It
is in fact an iteration or a loop of the sequence of two ac-
tions, moving one foot forward, and then moving the other
foot forward. So an account of event composition requires
the concept of loops or iteration.

We can write Repeat-Until(e1,e2) to describe the com-
posite event of an iteration of event type e1 happening
until state e2 holds. Repeat-Until takes two things of
type ev as its arguments. The resulting vexpr describes the
composite event in which the first argument is repeated
until the second argument holds or obtains.

 Repeat-Until(e1, e2)
Normally, e1 is the sort of event that changes the world in
a way that affects whether or not e2 holds or obtains.

A While-Do(e1,e2) construct is also part of VERL.
While-Do takes two things of type ev as its arguments. The
resulting vexpr describes the composite event in which the
second argument is repeated as long as the first argument
holds or obtains.

 While-Do(e1,e2)
While-Do can be defined in terms of other operators:
 PROCESS(While-Do(ev e1, ev e2),
 Conditional(e1,
 Repeat-Until(e2, NOT(e1))))
Alternation is also required. Suppose we are watching a

man on an assembly line taking objects off the conveyer
belt and tossing them into Bin A or Bin B. We may not be
able to determine a better description of this action than as
an iteration of alternative actions. We can express alterna-
tion in terms of the logical operator OR.

Conditionals are required as well. We may be able to
determine that the man is looking at the objects on the
conveyer belt and tossing the round ones into Bin A and
the square ones into Bin B. In this case, the best descrip-
tion of the composite event is as an iteration with a condi-
tional in the loop. The man is able to make observations
and conditionalize his actions on what is observed.

In VERL, Conditional takes two or three events as its
arguments. It says that if the first argument holds or ob-
tains, then the second argument happens; otherwise the
third argument happens, if there is a third argument.

 Conditional(e1, e2)
 Conditional(e1, e2, e3)

The resulting vexpr describes a piece of behavior that has
been recognized to operate in this fashion.

This completes the specification of the syntax of
VERL. We next present a class of predicates that are very

 5

useful in building up and relating complex structured
events.

3.8. Temporal Relations
Representing the temporal relations among component

events is crucial in recognizing composite events. For most
applications, describing the relations among the temporal
intervals occupied by the component events, according to
Allen’s interval algebra (Allen and Ferguson, 1997), is
sufficient. This is because agents are responding primarily
to the actions of other agents or the behavior of moving
objects. Even in a case where one of the threads is pre-
cisely timed, such as a conveyor belt in a factory, the
worker is responding primarily to the appearance of the
part rather than to the passage of a certain amount of time.

Times come in two varieties—instants and intervals.
Thus,

 SUBTYPE(temporal-entity, thing)
 SUBTYPE(instant, temporal-entity)
 SUBTYPE(interval, temporal-entity)
Of two distinct instants, one is before the other. The

predicate after is the inverse of before.
 before(t1,t2), after(t1,t2), t1=t2
An instant t and an interval T can be in several possible

relations:
 begins(t,T), inside(t,T), ends(t,T)

It may be that none of these is true.
There are six possible basic relations that can obtain be-

tween two intervals:
 before(T1,T2), meets(T1,T2), overlaps(T1,T2),
begins(T1,T2), contains(T1,T2), ends(T1,T2)

These form the basis of Allen’s interval algebra. They can
be defined in terms of begins, inside, and ends relations
between instants and intervals.

There are two possible relations between events and
times: Some events happen instantaneously. In this case,
we say

 at-time(e,t)
where t is an instant. Some events happen across intervals,
with a duration. In this case we say

 during(e,T)
where T is an interval.

The OWL-Time ontology [4] provides a rich elabora-
tion of these concepts and includes treatments of measures
of duration, clock and calendar terms, and temporal aggre-
gates. In some cases, this richer theory of time is required.

Many actions are rhythmic, and recognizing this is an
important part of recognizing the higher-level event. A
rhythmic event can be characterized as an iterative event in
which the iterations occupy time intervals of equal dura-
tion. Rhythm is often used to coordinate multithread itera-
tive action. Finally, it is sometimes necessary to relate
events to the clock and calendar.

3.9. The Semantics of VERL
One of our design goals was to give VERL expressions

a clear semantics, by translating them into equivalent first
order logic sentences. In most cases, the semantics should
be obvious, but the are several hidden subtleties. We are
unable to include the details of this semantics due to space
limitations but expect to document them in a forthcoming
report.

4. An Example: An Abstract Ontology of
Mobile Objects

In this section, we give an example of devising an on-
tology for a particular, though abstract, domain—the do-
main of mobile objects, such as one that surveillance ap-
plications would be concerned about. This will illustrate
some of the concepts discussed above and the approach to
constructing an ontology for an application.

In surveillance applications, there will be many objects,
but we are primarily interested in Mobile Objects; we will
restrict these to objects that are capable, insofar as we can
tell, of independent motion. People, animals, and cars are
examples. There are also Portable Objects. These are ob-
jects that a mobile object can pick up and carry to another
location, but they are not necessarily capable of moving of
their own accord. A toddler is a portable object that is
capable of independent motion; a book is a portable object
that isn’t.

Among the contextual objects are containers. By this
we mean anything that something else can be inside or
outside of. Rooms, trash containers, and fenced-in areas
are all containers.

For each of the categories Object, Mobile Object, Con-
tainer, and Portable Object, we list the properties they have
and the relations they can participate in. By considering
the changes in these properties and relations, we arrive at
the primitive events that can happen to them

A Mobile Object has a velocity and a direction. The
primitive events are:

Speed-Up Change from a lower to a higher velocity
Slow-
Down

Change from a higher to a lower velocity

Start Speed-Up when the start velocity is 0
Stop Slow-Down when the finish velocity is 0
Turn-
Right

Clockwise change in direction

Turn-Left Counter-clockwise change in directions
Two Objects can be in a “distance-from” relation.

When at least one of those Objects is a Mobile Object, this
relation can change. This gives rise to the following primi-
tive events:

Move-Toward(A,B) A moves and changes the distance
from B to a smaller value

Move-Away-
From(A,B)

A moves and changes the distance
from B to a larger value

 6

When the distance between A and B is 0, we can say A
is “at” B. We can define a “move” event as a change of
state from A being at B to A being at some other object C.

It may be useful to have a further notion of “Move-
Directly-Toward.” Someone walking obliquely past a
doorway will have a period in which they are moving
closer to it, but we might want to draw different inferences
in this case and the case where the person moves directly
toward it.

It may also be useful to have a notion of one object be-
ing “near” another object. This is generally a functional
notion—near enough for some purpose. In a particular
domain, it may be possible to define this precisely in terms
of distance.

Containers have Portals that can be open or closed. A
Mobile Object A and a Container B can be in one of two
relations—inside(A,B) and outside(A,B). This gives rise to
two primitive events:

Enter(A,B) A changes from outside B to inside B.
Exit(A,B) A changes from inside B to outside B.

For either of these events to happen, the Portal must be
open, and A must go through (be at) the portal during the
state change.

The two possible relations between Mobile Objects and
Portable Objects are “hold” and its negation. The primitive
events are

Pick-Up(A,B) There is a change from A not holding B
to A holding B.

Put-Down(A,B) There is a change from A holding B to A
not holding B.

In terms of these, we can define a “carry” event as con-
sisting of
Sequence(Pick-Up(A,B), AND(Hold(A,B), Move(A,C,D)),
Put-Down(A,B))

When a Portable Object is held by a Mobile Object,
they are constrained to move together. A “take-from”
action is a change from a portable object being held by one
object to its being held by another. An “exchange” consists
of two reciprocal take-from actions.

Events are possible involving two Mobile Objects, but
these can be decomposed into primitive events we have
already presented. For example, when two mobile entities
approach each other, they are each moving toward the
other.

5. Domain Ontologies
During the workshop participants used VERL to de-

velop ontologies in the domains of physical security and
meeting videos domains to highlight commonalities and
differences.

5.1. Physical Security Domain
Monitoring events for physical security is an important

application of video analysis. This domain also offers a
good test of the ontology framework because events of

interest are defined almost directly in terms of observable
activities.

The researchers participating in this group naturally di-
vided up into six subgroups, each exploring a different
sub-domain, such as bank monitoring, outdoor surveil-
lance, and railroad crossing monitoring. Initially, each
sub-group defined its own set of objects, relations, primi-
tive events, and complex events, which were combined to
form complex events of interest to the users. Later,
common elements were found between the sub-domains
and used to construct the beginnings of a common ontol-
ogy.

The definitions include more than 100 primitive and
composite events. Clearly, more events could be defined
and more sub-domains included. In particular, more
events that require coordination between multiple actors
over extended periods of time (perhaps days) were not
considered. Nonetheless, we feel that the defined events
helped validate the power of the representation framework
and provide a set of definitions that should be usable by
other researchers.

5.2. Meeting Domain
The domain of meeting and conference videos is con-

siderably more complex than the security domain in the
sense that events of interest take place at many levels of
granularity, plus audio and text play important roles. To
limit complexity, we decided not to represent the linguistic
content.

Meetings can be analyzed at four levels:
1. The who, what, where, and when of the meeting,

the sort of information that appears on a seminar
announcement

2. The type of meeting, such as presentations and
roundtable discussions

3. The “everyday rules of order” – how the
contributions of individual members cooperate to
perform group actions, e.g., bring up and dispense
with topics, make decisions, and assign tasks

4. The communicative actions of individuals, such
as utterances and gestures, and communicative
complexes of small sets of individuals, such as
“F-formations”

Our ontology describes an initial approach to levels 1,
2, and 4. Level 1 is fairly straightforward to characterize.
Level 2 is a matter of explicit convention that members of
our culture are familiar with, and thus it is also fairly
straightforward to formalize. Level 4 is a very complex
domain and is the locus of a great deal of good research.
We have only been able to sketch some elementary aspects
of this level. Level 3 is a difficult and little-studied area,
and we have had to leave this for future work.

 7

6. Markup Language (VEML)
We have defined a Video Event Markup Language

(VEML) for representing specific instances of objects and
events detected in video streams so that they can be ex-
changed between research groups and analysis techniques.
VEML encodes such things as the name of an event, its
type, the beginning and ending times of it, and the actors
participating in it. This information is encoded in XML
and written to a file in a standard way for use by other
computer programs.

Figure 1 shows the relationship of VEML to VERL.
VERL is essentially a programming language for describ-
ing generic events, such as sneaking in a door behind
someone or stealing something, as compositions of other
events. VEML encodes instances of objects and events
detected in video data in XML. In particular, VEML is
designed to encode five items for a set of events that have
been automatically extracted or interactively annotated in a
set of stream data:

• the ontology used (i.e., a pointer or file reference
to the VERL definition)

• the data streams involved
• the context, such as the geometric structure of

the local scene
• the objects, such as people and suitcases, that

participate in the events
• the events themselves, such as approach, grasp,

and sneak-in
The next section contains an example of a VEML file that
describes a set of objects and events associated with a
person entering a locked facility by tailgating another
perons.

{Note that we allow multiple synchronized video data
sets and audio tracks to be examined and annotated in
parallel, although the majority of our initial examples
involve only a single video stream.}

7. An Example of VERL and VEML
In this section, we present a sample set of VERL defini-

tions that leads up to a description of a tailgating event,
and then present a portion of a VEML file that encodes
occurrences of these events detected in a video.

7.1. Sample VERL Definitions
// subtypes of entities {a partial taxonomy of ents for
// this example}
SUBTYPE(person, ent)
SUBTYPE(facility, ent)
SUBTYPE(portal, ent)
SUBTYPE(door, portal)
SUBTYPE(window, portal)

// primitive properties of ents
// {Note: if you were to specify mobile and container
// as subtypes of ent, you could not have mobile
// containers.}
PRIMITIVE(container(ent x))
PRIMITIVE(mobile(ent x))
PRIMITIVE(open(portal x))
PRIMITIVE(closed(portal x))
PRIMITIVE(locked(portal x))
PRIMITIVE(unlocked(portal x))
PRIMITIVE(portal-of(portal p, container c))
PRIMITIVE(inside-of(ent x, ent y)) // x is on the inside
 // of the container y
PRIMITIVE(near(ent x, ent y) // (= close) x is within
 // some distance of y, where the distance is context
 // dependent.
PRIMITIVE(behind(ent x, ent y)) // x is on the same side
 // of y as the back of y.
 // Defined only when y has a "front" //and "back",
 // such as a person or vehicle.
PRIMITIVE(behind(ent x, ent y, point observer-position))
 // x is on the opposite side of y as observer-position
 // ("behind" the tree means that //the person is on the
 // other side of the tree rom the observer).

 // rules associated with ents and evs
RULE(IMPLY(person(x), mobile(x)) // people are
 // mobile
RULE(IMPLY(facility(x), container(x)) // all facilities
 // are containers
RULE(IMPLY(portal(p), AND(container(c),

 portal-of(p, c))))
RULE(IMPLY(AND(portal-of(p, c), open(p)), open(c)))
// portal open => container

// processes describing relationships, events, etc.
PROCESS(far(ent x, ent y), NOT(near(x, y)))
PROCESS(outside-of (ent x, ent y),

NOT(inside-of (x, y)))

PROCESS(approach(ent x, ent y),
cause(x, change(far(x,y), near(x, y))))

PROCESS(leave(ent x, ent y),
cause(x, change(near(x, y), far(x, y))))

PROCESS(exit(ent x, ent y), change(inside-of(x,y)),
 outside-of(x,y)))
PROCESS(enter(ent x, ent y), change(outside-of(x,y)),
 inside-of(x,y)))
PROCESS(unlock(portal p), change(locked(p)),
 unlocked(p)))
PROCESS(open(portal p), change(closed(p)), open(p)))

 8

// definition of a TAILGATING event x is near y when
// they get access to a facility, & then x enters behind y
SINGLE-THREAD(tailgate(ent x, ent y, facility f),
 AND (portal-of(door, f))

 Sequence(
approach(y, door),
unlock(y, door),
open(y, door),
AND(enter(y, f), near(x, y)),
NOT(unlock(x, door)),
enter(x, f)))

7.2. Portion of a VEML File Encoding Events
Detected in a Specific Video

A VEML file, such as the one below, encodes the
global information about the data and scene, and then
describes the objects and events detected in the data. In
this example, there are four objects of interest:

1. Person1, who unlocks the door and enters the
facility legitimately

2. Person2, who enters by following Person1
through the door

3. Facility1, which is the locked container that the
two people enter

4. Door1, which is the door through which the two
people enter the facility

There may be several events detected and encoded in
the file, but some of the key ones for this example are

1. Person1 approaches Door1
2. Person2 follows Person2
3. Person1 unlocks Door1
4. Person2 enters Door1 by tailgating Person1

<scene>

<ontology>
<source>…/ontologies/physicalSecurity
.verl</source>
</ontology>

<streams>
 <video id="sneak02">
 <offset unit="frames">0</offset>
 <duration unit="frames">450
 </duration>
 <samplingRate>30</samplingRate>
 <source>/home/dvtt2/IU/video/
 data/sneak02/sneak02.sriv
 </source>
 </video>
</streams>

<context>
<!-- To Be Determined -->
</context>

<objects>
 <object type="PERSON" id="OBJECT1">
 <property name="name" value=
 "Person1"/>
 <tracks></tracks>
 </object>
 <object type="PERSON" id="OBJECT2">
 <property name="name" value=
 "Person2"/>
 <tracks></tracks>
 </object>
 <object type="FACILITY" id=
 "OBJECT3">
 <property name="name" value=
 "Facility1"/>
 <tracks></tracks>
 </object>
 <object type="ENTRANCE" id=
 "OBJECT4">
 <property name="name" value=
 "Door1"/>
 <tracks></tracks>
 </object>
</objects>

<events>
 <event type="APPROACH" id="EVENT1">
 <begin unit="frames">136</begin>
 <end unit="frames">247</end>
 <property name="name" value=
 "Approach1"/>
 <argument argNum="1" value=
 "Person1"/>
 <argument argNum="2" value=
 "Door1"/>
 </event>
 <event type="FOLLOW" id="EVENT2">
 <begin unit="frames">177</begin>
 <end unit="frames">247</end>
 <property name="name" value=
 "Follow1"/>
 <argument argNum="1" value=
 "Person2"/>
 <argument argNum="2" value=
 "Person1"/>
 </event>
 <event type="UNLOCK" id="EVENT3">
 <begin unit="frames">260</begin>
 <end unit="frames">332</end>
 <property name="name" value=
 "Unlock1"/>
 <argument argNum="1" value=
 "Person1"/>
 <argument argNum="2" value=
 "Door1"/>

 9

 </event>
 …
 <event type="TAILGATE" id=
 "EVENT12">
 <begin unit="frames">177</begin>
 <end unit="frames">508</end>
 <property name="name" value=
 "Tailgate1"/>
 <argument argNum="1" value=
 "Person1"/>
 <argument argNum="2" value=
 "Person2"/>
 <argument argNum="3" value=
 "Facility1"/>
 </event>
</events>

</scene>

8. Summary
We believe that we have made significant progress in

defining an event ontology framework, a formal represen-
tation language, and specific ontologies for the security
and meeting domains. We believe that use of such on-
tologies will greatly help in advancing research in event
recognition from videos by allowing researchers to share
their results in a unified framework. In addition, VEML
can help in exchanging annotated videos and in evaluating
the results of automated analysis as outlined in our evalua-
tion document. Another important benefit of the whole
challenge project has been in bringing large segments of
the research community together and forming a consensus
on foundational issues.

In spite of the progress made, much remains to be done.
For example, the framework needs to be exercised on
much more complex events and the ontologies for specific
domains need to be expanded significantly. We have not
addressed ontologies for domains such as broadcast news
video where the content tends to be largely unrestricted.
For videos containing speech or text, integration with
linguistic ontologies also needs to be explored.

The event ontologies need to be embedded in a standard
knowledge representation framework, such as OWL or
Semantic Web Rule Language (SWRL), to exploit the
inference engines available in that community. Plus,
tools need to be developed to efficiently annotate videos
and check their consistency with an underlying ontology.
We hope that the broader research community will take
interest in exploring these issues.

Acknowledgments

This research was funded by the Advanced Research and Devel-
opment Activity (ARDA) of the U.S. Government under a con-
tract to the Pacific National Northwest Laboratory of the De-
partment of Energy.

The paper describes contributions of many partici-
pants. Rich Quadrel provided the project management and
Mark Maybury provided general project guidance. Penny
Lehtola and John Prange were the principal sponsors.

Jerry Hobbs, Brian Burns, Sadiye Guler, Francis Quek,
Isaac Cohen, Chris Connolly, and Alex Francois were
group leaders or co-leaders.

Other participants included: Terry Adams, Dan
Aldridge, Umut Atdemir, Aaron Bobick, Rachel Bowers,
Francois Bremond, Rama Chellappa, Larry Davis, Peter
Doucette, Jon Fiscus, , John Garofolo, Wayne Greiff, Is-
mail Haritaoglu, Alex Hauptmann, Ryan Hohimer,
Ramesh Jain, Ranga Kasturi, Chris Laprun, Steve Long,
Inderjeet Mani, Alvin Martin, Paul Matthews, Andy Mer-
lino, Martial Michel, Joe Mundy, Srini Narayanan, David
Palmer, Randy Paul, Bruce Porter, Mubarak Shah, Tracy
Standafer and Monique Thonnat

References

[1] Allen, James F., and George Ferguson, 1997. “Actions and
Events in Interval Temporal Logic,” in O. Stock (ed.), {\it
Spatial and Temporal Reasoning}, Kluwer Academic Pub-
lishers, Dordrecht, Netherlands, pp. 205-245.

[2] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin,
D., McIllraith, S., Narayanan, S., Paolucci, M., Payne, T.,
Sycara, K., Zeng, H., 2002. DAML-S: Web Service Descrip-
tion for the Semantic Web, International Semantic Web
Conference (ISWC) Sardinia, June 2002.

[3] Bettini, Claudio, X. Sean Wang, and Sushil Jajodia, 2002.
“Solving Multi-granularity Temporal Constraint Networks,”
Artificial Intelligence, Vol. 140, pp. 107-152.

[4] Hobbs, Jerry, 2002. “A DAML Ontology of Time,”
http://www.cs.rochester.edu/~ferguson/daml/daml-time-
29jul02.txt.

[5] Y.A. Ivanov, A.F. Bobick, “Recognition of Visual Activities
and Interactions by Stochastic Parsing,” IEEE Trans. on
PAMI, no. 8, pp. 852-872, August 2000.

[6] S. Narayanan (1997) KARMA: Knowledge-based Action
Representations for Metaphor and Aspect, Ph.D. disserta-
tion, University of California, Berkeley, California.

[7] R. Nevatia, T. Zhao and S. Hongeng, “Hierarchical Lan-
guage-based Representation of Events in Video Streams,”
Proceedings of the Workshop on Event Mining (in conjuc-
tion with IEEE CVPR), Madison, WI, June 2003.

[8] T. Vu, F. Brémond and M. Thonnat, “Automatic Video
Interpretation: A Novel Algorithm for Temporal Scenario
Recognition”, The Eighteenth International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, 9-15 August
2003.

 10

Figure 1. A diagram of the relationship between VERL and VEML.

