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Abstract

This paper addresses the problem of tracking human body 

pose in monocular video including automatic pose 

initialization and re-initialization after tracking failures 
caused by partial occlusion or unreliable observations. 

We proposed a method based on data-driven Markov 

chain Monte Carlo (DD-MCMC) that uses bottom-up  
techniques to generate state proposals for pose estimation 

and initialization. This method allows us to exploit 
different image cues and consolidate the inferences using 

a representation known as the proposal maps. We present 

experimental results with an indoor video sequence.   

1 Introduction 

 Human body tracking is an important computer vision 

challenge in video understanding applications. This 

involves estimating the human poses in a given video 

sequence and it is useful for recognition of human gesture, 

analysis of human activities and understanding of human 

movement dynamics. This work focuses on human pose 

estimation with a monocular video that does not rely on 

markers on the human body. We use an articulated human 

model and the pose is represented by parameters that 

describe the body position, orientation and various joint 

angles.  

1.1 Issues  

 The main issue in monocular human pose estimation is 

the lack of observables that can be used to infer the pose 

fully and reliably. The observations that are available 

contain noise, outliers, ambiguities, and do not directly 

provide depth information.  There have been previous 

efforts that used multiple cameras, including range data 

from stereo [2], to obtain more reliable observable for 

pose estimation. However this framework is infeasible for 

many surveillance applications and for archived video 

analysis, where only monocular sequences are available. 

 The human pose is typically represented by more than 

30 parameters. Therefore, an issue is how to search in this 

high dimension state space efficiently. In a video 

sequence, the problem can be formulated as one of 

dynamic state estimation. One may then use the previous 

state and a dynamic model to reduce the search space for 

the current state.  Estimating the initial state is another 

key issue.  In some sequences, there will be inter-

occlusions of body parts during which the estimated states 

are unreliable. Therefore, there is a need to re-initialize 

(either a partial or the full state).  

1.2  Related Work 

 There are various statistical techniques for tracking. 

For vision-based tracking of rigid objects,  Kalman 
filtering technique is often used. For a nonlinear system, 

the extended Kalman filter (EKF) provides an alternative 

technique. EKF has previously been used for human pose 

tracking but it has severe limitations since it is a single 

mode tracker and breakdowns when the observation is 

ambiguous. 

Particle filtering provides a powerful technique for 

estimating dynamic state with ambiguous observable, by 

approximating the state posterior distribution with a set of 

samples. But since human pose space is of high 

dimension, a particle filter is likely to degenerate when 

there are insufficient particles to characterize a complex 

state posterior distribution. Particle filtering has been used 

for pose tracking [3], but with poses in which the 

observation is relatively salient. Particle filtering may fail 

when, for example, there are inter-occlusions of body 

parts in past frames, unless there are other mechanisms to 

“relocate” the particles to particle-depleted regions of the 

state space [6].     

 In a 2D image, the depth of a joint is not directly 

observed; even if the image positions of two adjacent 

joints are known, there is a two-fold ambiguity in their 

relative depths. In [10], a mixture density propagation 

method is used to overcome depth ambiguities of 

articulated joints. This is later improved with a mixture 

smoother [11].  Recently, a belief propagation (BP) 

method has been used for pose estimation, in which the 

inference on each body component is propagated along a 

belief network [9].  This method requires the formulation 
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of joint potential functions of cliques in the network, as 

well as conditional distributions of various observations. 

This is often difficult and approximating techniques have 

been introduced in a non-parametric BP framework. 

Nonetheless, there are limitations in BP, in regards to 

enforcing global constraints during evaluation. 

 To deal with the high dimensional state space and pose 

ambiguities, some previous efforts assume a low-

dimensional dynamic space, (e.g. walking human)[1][13]. 

This scheme often results in good tracking in the studied 

movement, but less applicable for uncontrolled human 

motion.  Recently, the use of bottom-up local parts 

detection is becoming a popular approach [8] to bootstrap 

the pose estimation. 

1.3 Our Approach 

 We adapt a data-driven Markov chain Monte Carlo 

(DD-MCMC) approach [15] for dynamic pose estimation. 

In MCMC, pose estimation is formulated as a state 

estimation problem and the posterior is estimated by a set 

of samples generated as states in a Markov chain by a 

proposal function and accepted according to the 

Metropolis-Hastings algorithm.  

 This approach allows us to incorporate a generative 

human model that handles variations in human pose, body 

shape and simple clothing type. Given a state candidate, 

we can compute its likelihood measures by generating a 

synthesized human and comparing it to the input image. 

 The proposal function consists of different mechanisms 

to generate pose hypotheses. One mechanism is the 

forward propagation of previous frame pose estimates. 

Another mechanism is a bottom-up approach that exploits 

the observation in the current frame to infer the pose.  The 

observation includes part-based detection of face, head-

shoulder contours and limbs. We use a representation, 

known as proposal map, to consolidate the inference 

provided by the observation and to facilitate the data-

driven proposal. It is not guaranteed that a proposal 

function derived from these observations will lead to the 

convergence to the true posterior. As these observations 

are used to reduce the search space, it may result in a 

proposal distribution with insufficient support for 

sampling the posterior. Using body part detectors that 

have high recall rates reduces the risk of this failure. 

 DD-MCMC approach and proposal maps have been 

previously used for human pose estimation in a single 

image in [5]; this work extends the method to estimate 

pose in a video sequence. Here, multiple Markov chains 

are used, one for each frame of the sequence and the 

estimation in adjacent frames are allow to influence the 

Markov transition based on a human dynamic model. 

Dynamic programming is used to extract the optimal 

trajectory of the human movement.  

 Our approach has two main advantages. First, it allows 

us to evaluate a pose candidate via synthesis using image 

domain cues such as region-based and color-based 

features, which are more easily obtained. In addition, 

evaluation is performed holistically after rendering the 

entire human form and this allows us to consider highly 

nonlinear constraints such as non-self-penetration. In 

contrast, evaluation approaches that examine each 

component independently often fail to consider such 

constraints.

 Second, the DD-MCMC approach provides the 

flexibility to design different proposal mechanisms for 

generating state candidates and exploring the state space 

effectively. This includes using bottom-up techniques that 

exploit local component-level observations such as face 

detection [14] and limbs detection. This allows us to 

overcome the lack of observable in some frames and to 

recover smooth trajectories of the body poses. 

 This paper focuses on the case of only one person in 

the scene at a time. We believe that the framework can be 

extended to handle multiple persons and other objects 

(such as vehicles), including situations when they may 

inter-occlude; because with a top-down generative 

approach, hypotheses of multiple objects can be evaluated 

jointly. In this work, we have assumed an orthographic 

projection model, and that the person’s face and hand skin 

regions are visible. 

2 Estimation Framework  

In this section, we describe the key components of our 

estimation framework including the human model, the 

observation, and the formulation of the prior distribution 

and likelihood function. 

2.1 Human Model 

 The human model is an explicit representation of the 

human body structure. It defines the pose parameters 

which consist of the torso position, orientation and 

various body joint angles. Additional latent parameters 

are also included in order to synthesize the human 

appearance more suitably for pose evaluation. These 

latent parameters describe the shape of limbs and clothing 

type. Figure 1 illustrates the main components of the 

human model. More details are available in [5]. 

(a) (b) (c) 

Figure 1: Human Model. (a) Kinematics structure, (b) 
shape, (c) cloth/skin visibility 
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2.2 State Estimation  

 Pose estimation is formulated as the problem of 

estimating the state of a system. Suppose we have a 

sequence with T frames, the state is represented 

by },...,,{ 21 TXXX , where tX represents the state at the tth

frame. The state includes the pose parameters (i.e. body 

position, orientation and joint angles), shape parameters 

and clothing parameters. 

  The shape and clothing parameters of a person are 

normally considered as static. However, since they are 

unknown and need to be estimated from observation, we 

consider these parameters as dynamic so that we can 

evaluate their likelihood measures by processing data 

within a local temporal neighborhood.  

 The observed images are denoted as },...,,{ 21 TIII . We 

assume that each observed image is conditionally 

dependent on the current state only. The relationships 

among the variables can be represented by a graphical 

model, as shown in Figure 2. 

Figure 2. Graphical Model.

2.3 Prior Distribution 

 The prior distribution of the state, denoted by 

),...,,( 21 TXXXp , can be decomposed into a series of 

potential functions corresponding to the pairs of adjacent 

states in the graphical model.  
1

1

121 ),(
1

),...,,(
T

t

ttT XX
z

XXXp ,

where Z is a normalization constant. Each potential 

function can be further decomposed into a prior 

distribution of a state, and a conditional distribution: 

)|()(),( 11 ttttt XXpXpXX .

 The prior distribution is learned from a training set of 

human poses in static image and sets of motion capture 

data.  The conditional distribution is based on a zeroth-

order dynamic model and is approximated by a normal 

distribution. 

),()|( 11 tttt XXNXXp ,  (1) 

where is the covariance matrix of the dynamic model 

and is learned from motion capture data. 

2.4 Observation and Likelihood Function 

 Observations are used in two complementary ways. 

First, the observations are used to evaluate pose 

candidates by synthesizing the human form and 

comparing it with the input image; this is described in this 

section. Second, some observations are used to design 

proposals for generating pose candidates during the 

Markov chain search. This is described in Section 3.  

 A state candidate tX is evaluated by a likelihood 

function denoted by )|( tt XIp . Here, we assume that the 

image is conditionally dependent on the current state only.  

We formulate the image likelihood function as 

consisting of four components, based on (i) region 

coherency, (ii) color dissimilarity with background, (iii)
skin color and (iv) foreground matching. We describe 

them briefly in the following; the first two were also used 

in  previous work and are described in more detail in [5]. 

Region coherency.  Color-based segmentation is used to 

divide a given image into a set of regions. For a given 

state candidate, we predict the human body region in the 

image. Ideally, this human region will coincide with the 

union of a certain subset of the segmented regions. This 

region likelihood function measures the degree of 

similarity between the human body and the segmented 

regions. 

Color dissimilarity with background. This likelihood 

measures the dissimilarity between the color distributions 

of the synthesized human region and the background 

region. 

Skin color likelihood. The system state includes 

parameters describing the length of the sleeves. Therefore, 

given a state hypothesis, we can predict the positions of 

the visible skin regions and non-skin regions. This 

likelihood measures the likelihood of color in these 

regions based on their predicted types. Denoting ic as the 

color value of the ith pixel in the predicted human region, 

the likelihood is given by 

N
N

i

l

iskinnon

l

iskinskinskin
ii cPcPKL

/1

1

1
)()( ,

where skinK is a constant and N is the number of pixels in 

the predicted human region. )( iskin cP and )( iskinnon cP are 

the likelihoods of the pixel value for skin and non-skin 

region, derived from a histogram-based color model. il  is 

a binary variable and has the value of 1 if the ith pixel is 

… … … … Xt-1

I1 It-1 It It+1 IT

XTXt+1XtX1
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the skin (based on the predicted pose), and has the value 

of 0 otherwise. 

(a) (b) (c) (d) 

Figure 3. Skin Color Likelihood. (a) Input image, 
(b) rendered human, (c) predicted skin color regions, 

(d) predicted non-skin regions

Foreground matching.  In some video sequences, we 

can extract the foreground region by background 

subtraction. This likelihood component measures the 

matching between the foreground and the synthesized 

human region based on overlapping ratio [16].  

The combined likelihood measure is the product of 

the four likelihood components, assuming that they are 

independent. 

3 Proposal Mechanisms 

In this section, we describe the different proposal 

mechanisms used for the Markov chain transitions. 

3.1 Proposal Function  

The MCMC uses a proposal function to generate state 

candidates. There are techniques that generate samples 

that update the whole state sequence },...,,{ 21 TXXX  (e.g. 

[7]), but such schemes have high computation complexity. 

Instead, we focus on the proposal function for a state tX

at a time.  

The proposal function allows the Markov chain search 

to explore the state space efficiently. Due to the high-

dimensional state space, the proposal function should be 

guided by evidence that provides inference of the state 

either fully or partially 

We denote tX  is the current Markov chain state, and 

*

tX  as a candidate for the new state. This candidate is 

generated by three types of evidence: 

1. The estimation of previous state, 1tX , can be 

propagated using a human dynamic model to generate 

candidates for the current state. This is often used in a 

sequential estimation framework and particle filtering is 

one specific technique. However, by itself, this is 

insufficient for dynamic pose estimation because inter-

parts occlusion of the body would cause the state 

estimation to be unreliable during these frames.  

2. The candidates can be generated from the current 

observation, tI . This is an adaptation of a bottom-up data-

driven approach [15] that has now been used for a number 

of computer vision tasks [12][16][17]. We shall discuss 

this in more details in Section 3.2.  

3. Using a backward-propagation approach, the estimation 

of the next state, 1tX , can also be used to generate 

candidates for the current state. We note that the 

backward-propagating component, )|( 1

*

tt XXq , is 

optional, depending on application requirement and 

constraint. This proposal mechanism is helpful in 

extracting a smooth pose trajectory and is applicable in a 

fixed-lag or batch mode of operation.  

The proposal distribution is denoted by 

),,,|( 11

*

ttttt XXIXXq , where tX  is the current 

Markov chain state. For simplicity, the distribution can be 

decomposed into its components: 

)|()|(

)|()|(),,,|(

*

41

*

3

*

21

*

111

*

tttt

ttttttttt

XXqXXq

IXqXXqXXIXXq

where ,,, 321  and 4 are the mixing ratios for the 

different components. The last component, )|( *

tt XXq ,

represents a proposal distribution derived from the current 

Markov state. It is implemented to involve both the 

random-walk sampler [4], and the flip kinematic jump 
[10] which is specifically designed to explore the depth 

space for resolving the depth ambiguity.   

Figure 4. Types of Proposals. 

3.2 Data-Driven Proposals 

We use observations in the current frame to design 

bottom-up proposal for the state, )|( *

tt IXq . The 

Random-walk sampler, 

Flip kinematics 

Forward Propagation Backward Propagation 

(optional) 

Data-driven  

Xt-1

It

Xt+1Xt
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observation include face detection, head-shoulder contour 

matching and skin blob extraction [5] (see Figure 5).  

(a) (b) (c) 

Figure 5. Image Observation. (a) Face detection, (b) 
head-shoulder contour matching, (c) skin blobs. 

The evidence provided by these observations can be 

integrated and represented in proposal maps. There is one 

map for each body joint (Figure 6). In each map, the value 

at each pixel position represents the importance sampling 

probability of the corresponding joint’s image position. 

The maps are used to generate pose candidate in a 

component-based Metropolis-Hastings approach. This 

technique is motivated by the data-driven MCMC 

framework [15][16].  In [5], it is shown how this 

framework can be adapted for estimating 3D kinematics 

parameters by constructing  reversible jumps using the 

proposal maps and inverse kinematics computation. 

Input Head Neck Left 

Shoulder 

Right 

Shoulder 

 Left  

Elbow

Right 

Elbow

Left

Hand 

Right  

Hand 

Figure 6. Proposal Maps, (shown in pseudo-colors). 

3.3 Dynamic Proposals 

Dynamic proposal mechanism involves generating a 

state candidate for the current frame, *

tX , either from the 

estimates in the previous frame, 1tX , or in the next frame, 

1tX . For discussion, we focus on the former. 

The state estimation in the previous frame is 

represented by a set of state samples 

,...},{ 2

1

1

1 tt XX generated by the Markov chain search. In 

practice, the number of state samples is typically about 

500. We can approximate this by a mixture model 

approach with a more compact set of representative 

samples },...,,{ )(

1

)2(

1

)1(

1

N

ttt XXX , where N is the number of 

mixture components. These components, obtained by 

clustering the samples, can be viewed as representing 

distinct modes in the posterior distribution, and they are 

weighted according to their cluster sizes.  

To generate a state candidate for the current frame, a 

sample (*)

1tX is selected from the set of mixture 

components in the previous frame },...,,{ )(

1

)2(

1

)1(

1

N

ttt XXX

according to their normalized weights 

},...,,{ )(

1

)2(

1

)1(

1

N

ttt www . The sample is then propagated using 

the dynamic model. Using a zeroth-order dynamic model, 

the state candidate is generated by sampling a normal 

distribution centered at (*)

1tX  : 

),(~ (*)

1

*

tt XNX ,

where is the covariance matrix of the dynamic model, 

as described in Equation (1) of Section 2.3.  

The dynamic proposal distribution is given by: 
N

i

t

i

ttt XNwXXq
1

)(

1

)(

11

* ),()|( .

4 Optimal Sequence of Pose 

In Section 3, we have discussed how the estimation of 

the state for each frame is performed separately. This is 

equivalent to having multiple Markov chains, one for each 

frame.  

In each frame, the set of generated Markov samples 

can be represented compactly using a mixture model as 

described in Section 3.3. The trajectory of the human 

body can be recovered by “traversing” along the sequence 

and selecting a smooth set of poses from these mixture 

components, this is implemented using dynamic 

programming.  

For each frame, we denote t  as an index to one of 

the mixture components. We want to extract a set of 

indices }ˆ,...,ˆ,ˆ{ 21 T  that represent the optimal sequence: 

1

1

)(

1

)(

1

)(

},...,{
1 ),()|(maxarg}ˆ,...,ˆ{ 1

1

T

t

tt

T

t

ttT
ttt

T

XXXIp

where ),(
)(

1

)( 1tt

tt XX represents a potential function 

described in Section 2.3. It can be rewritten as: 
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1

1

)()(

1

)(

1

)(

},...,{

1

)|()()|(maxarg

}ˆ,...,ˆ{

1

1

T

t

ttt

T

t

tt

T

tttt

T

XXpXpXIp
.

The dynamic programming equations are: 

)|()()(
)(

11

)(

111
11 XIpXpf ,

)()|()()|(max)( 11

)(

1

)()()(

ˆ

1

1

ttttttttt fXXpXpXIpf tttt

t

,

where )( ttf is the joint posterior probability of the 

optimal sequence of poses from frame 1 to t, that 

terminates at the mixture component )( t

tX .

5 Experimental Results 

 In this section, we describe the experimental setup and 

the result.  

5.1 Setup

 A PETS-ICVS 2003 “smart meeting” video sequence 

[18] was used for evaluating the proposed technique. The 

video is annotated manually to aid in evaluation. An 

annotator located the image positions of the body joints. 

The depths of these joints, relative to the hip, were also 

estimated (Figure 7). The annotation data are used for 

evaluation only and not for training. 

 In this sequence, there are periods when the right arm 

is occluded. For these frames, the annotator is asked to 

estimate the positions of the occluded joints, based on his 

or her best judgment of the person’s movement. The 

scene contains a table in the foreground that occludes the 

person’s lower body. For this work, we manually extract 

the region of this table and consider it as an a priori 
known scene data. When the human model is rendered in 

the scene for evaluation, the region that is occluded by the 

table is ignored.    

5.2 Dynamic Pose Estimation 

 The results of pose estimation are shown in Figure 9. 

The tracking started after the human fully entered the 

scene. The initialization is automatic. The shape of the 

human model was initialized arbitrarily and subsequently 

adapted to the input.  

 For each frame, about 500 Markov state samples were 

generated, requiring about 4 minutes per frame on average 

on a 2.8 GHz Intel P4 processor. We have not 

investigated the minimum number of samples necessary 

to obtain good estimation and instead generated a fairly 

large number of samples for each frame. We expect that 

the number of samples depends on the human movement 

and degree of ambiguity in the image, and that it varies 

significantly for different frames. For evaluation, we 

compare the estimated joint position with the annotated 

position in the image. We also compare the estimated 

depth (relative to the hip) with the manually judged depth. 

As we assume an orthographic projection, the depth is 

also expressed in pixel units.  

 In the tth frame, we compute the 3D Euclidean distance 

error (in pixels) for the jth joint, denoted by j

te . We then 

compute the RMS error for that frame, denoted by tE ,

given as: 
21

1

2)(
1 M

j

j

tt e
M

E ,

where M is the number of joints used for evaluation. For 

this sequence, we evaluate based on 11 upper body joints, 

namely the hip, head, neck, shoulders, elbows, wrists, 

hands. These are used in all the frames, including the ones 

where part of the right arm is occluded.   

 The RMS error at each frame is plotted in Figure 8 (we 

call the testing of our proposed method Trial A) and the 

averaged RMS error for the whole sequence is given in 

Table 1.  For comparison, we also conducted two other 

trials. In Trial B, the back-propagation proposal was not 

used, and in Trial C, neither the forward nor the backward 

propagation proposals were used.  (In all the trials, 

dynamic programming was still used to extract the 

optimal sequences). 

(a) Image view                    (b) Depth view 

Figure 7. Pose Annotation. This is a snapshot of the 
pose annotation program. The colored circles indicate the 
joint positions located by the annotator, both on the image 
(a) and in the depth view (b). The depths are relative to the 
hip, which is always at the center of (b). To assist the user, 
a human stick figure is rendered to provide anthropometric 
reference. Here, the annotator had imagined where the 
occluded feet are, although the knees and feet were not 
used for the experimental evaluation.  
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Figure 8. Pose Estimation Error 

 Averaged RMS 

Error (pixels)

A  Proposed Method 24.99 

B  without backward proposals 31.45 

C  without forward nor 

backward proposals 

35.31 

Table 1. Average RMS Error for Sequence. 

The results show that in some frames, single frame 

analysis with DD-MCMC is capable of obtaining good 

pose estimation, and these are the frames where error 

measures are comparable in all the three trials. In other 

frames, however, the errors are much higher for Trial B 

and C, when compared to Trial A. This indicates that the 

dynamic proposals (both forward and backward) are 

useful in providing more consistent pose estimation.  

Between Frame 36 and Frame 49, the errors in Trial 

A are also high; this is one of the periods when the right 

arm is occluded. As the occlusion period is long, 

smoothing is unable to recover a good trajectory. Instead, 

the right hand is attracted to the skin region around the 

left elbow (see Figure 9(e,f)). We expect that some 

improvements in the likelihood function and the dynamic 

model will help overcome this problem. When the right 

arm reappears, our method is able to reestablish tracking, 

unlike what may be expected from many other tracking 

methods such as particle filtering, due to the data-driven 

proposal mechanism in our method.   

6 Conclusion

 We have proposed a data-driven MCMC method for 

dynamic pose estimation. This method allows us to 

incorporate different types of evidence for inferring body 

poses during the sequence. The evidence includes bottom-

up image observation which enables the system to 

perform automatic pose initialization and re-initialization. 

 There are some limitations of the system. The MCMC 

is an iterative process and therefore more computationally 

expensive than methods such as belief propagation. Our 

current method for detecting limbs relies on skin color. In 

addition, the generative model currently handles only a 

single person.  

 We are currently exploring the use of shape-based 

features as alternatives for limb detection and improving 

the dynamic model so that the system can perform better 

during periods of partial occlusion.  
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Figure 9. Dynamic pose estimation with PETS video with body turning movement. The person’s right hand was 
occluded in (b) and (c), but its track was reestablished in (d) when it reappeared.  There is also another period in (e) and (f)
when the right hand was again occluded and the estimations were erroneous as the right hand was attracted to the skin 
regions around the left hand. Track was regained in (g).
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