
Optimizing Discrimination-Efficiency Tradeoff in Integrating Heterogeneous
Local Features for Object Detection

Bo Wu and Ram Nevatia
University of Southern California

Institute for Robotics and Intelligent Systems
Los Angeles, CA 90089-0273
����������	
������
���

Abstract

A large variety of image features has been invented for
detection of objects of a known class. We propose a frame-
work to optimize the discrimination-efficiency tradeoff in in-
tegrating multiple, heterogeneous features for object detec-
tion. Cascade structured detectors are learned by boosting
local feature based weak classifiers. Each weak classifier
corresponds to a local image region, from which several
different types of features are extracted. The weak clas-
sifier makes predictions by examining the features one by
one; this classifier goes to the next feature only when the
prediction from the already examined features is not confi-
dent enough. The order in which the features are evaluated
is determined based on their computational cost normal-
ized classification powers. We apply our approach to two
object classes, pedestrians and cars. The experimental re-
sults show that our approach outperforms the state-of-the-
art methods.

1. Introduction
Detection of objects of a class, such as humans or cars,

is a fundamental problem of computer vision. It is difficult
because the object appearance may vary due to many fac-
tors, including viewpoint, occlusion, illumination, texture,
and articulation. This has motivated invention of different
image features that capture different characteristic proper-
ties. Some existing methods for object detection base their
detectors on a single type of feature. This enables a direct
comparison of the detection performance of different fea-
tures. Some others try to integrate multiple feature types to
improve performance. Intuitively, more information should
result in a better decision.

There are two main issues in feature integration. First,
evaluating all the features before making a prediction is not
efficient, because some features could be computationally
expensive but not bring a significant boost in classification
power. Second, different types of features could lie in dif-

ferent spaces, linear or nonlinear, which may require dif-
ferent classification techniques. For example, some fea-
tures may lie on a nonlinear manifold embedded in a linear
space. Directly applying the traditional classification tech-
niques based on Euclidean distance to such a feature space
is not appropriate as two points close in the linear space
may be far from each other on the manifold. Hence, di-
rect Cartesian product of different types of features before
classification is not always feasible.

In this paper, we propose a novel method for integra-
tion of heterogeneous features for object detection. Our ap-
proach balances two criteria: accuracy and efficiency. It has
better accuracy than the single-feature based methods and
yet maintains a relatively fast speed.

1.1. Related work
The problem of object detection has been worked on

since the beginning of computer vision research. A large
variety of image features has been developed. Some are
spatially global features, e.g. the edge template [24, 6], but
most recent methods use local features, because local fea-
tures are less sensitive to occlusions and other types of par-
tial observation missing. Some examples are the wavelet
descriptor [25], the Haar like feature [23], the sparse rect-
angle feature [12], the SIFT like orientation feature [17], the
Histogram of Oriented Gradients (HOG) descriptor [14],
the code-book of local appearance [15, 18], the edgelet
feature [16], the boundary fragment [9], the biologically-
motivated sparse, localized feature [7], the shapelet feature
[4], the covariance descriptor [5], the motion enhanced Haar
feature [20], and the Internal Motion Histogram (IMH) [10].
These features have been applied successfully to detection
of several object classes, including faces [25, 23, 12, 27],
pedestrians [24, 6, 17, 14, 15, 16, 4, 5, 20, 10], and cars
[25, 18, 7, 2].

After the features or descriptors are computed, they
are fed into a classifier. The classifier could be an SVM
[14, 27], a boosted cascade [23], or based on a graphical

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

model [3, 11, 9, 15]. For the graphical models, different
types of features are naturally integrated by the observa-
tion model of each node, like in [11]. However, estimating
the joint probability distribution in a high dimensional fea-
ture space is not feasible. In practice, it is usually assumed
that the different feature types are independent, so the joint
probability is equal to the multiplication of the probabili-
ties of individual feature types. For SVM classifiers, con-
catenated feature vectors are commonly used as input, but
this is feasible only when the features are homogeneous, as
the combination of two histogram features (HOG and IMH)
in [10]. Linear combination of multiple non-linear kernels,
each of which is based on one feature type, is a more general
way to integrate heterogeneous features, e.g. [1]. However,
both the vector concatenation and kernel combination based
methods require evaluation of all features. For cascade clas-
sifiers, different types of features can be included in one big
feature pool from which an ensemble classifier is learned by
a boosting algorithm, as in [20]. However, if there are big
differences of computational complexity between different
feature types, the speed of the cascade classifier learned in
this way will be dominated by the most complex feature
type.

1.2. Outline of our approach
We choose the cascade structured classifier [23] for our

classifier model, as it has proven to have both high accu-
racy and fast speed for several detection tasks [12, 16]. In
the previous cascade classifier methods, each weak classi-
fier corresponds to one image feature. In our approach each
weak classifier corresponds to one sub-region of the image
and different types of features are extracted from the sub-
region, see Fig.1 for an illustration. The classification func-
tion for each type of feature is learned in its own feature
space. The multi-feature weak classifier makes a prediction
by examining the different types of features from the sub-
region one by one. Only when the prediction based on the
already examined features is not of high confidence, does
the weak classifier look at the next feature type. The order
in which the features are evaluated is determined based on
a measure of the classification power that includes the cost
of computational time. A number of such weak classifiers
are selected and combined by a boosting algorithm to form
a cascade structured classifier.

The main advantages of our approach compared to the
previous methods are: 1) the speed normalized classifica-
tion power is used as the criterion for feature selection.
Thus, the optimization goal is not only classification accu-
racy but also efficiency. 2) The classification functions of
different types of features are learned in their own spaces,
not in the Cartesian space, so that different classification
techniques can be used to achieve better accuracy for dif-
ferent features. 3) Complex features, which may be more
powerful, are evaluated only when necessary, i.e. when the

decision can not be made confidently from the relatively
cheap features. We use three types of features, the edgelet
feature [16], the HOG descriptor [14], and the covariance
descriptor [5], and two object classes, pedestrians and cars,
to demonstrate and validate our approach. The experimen-
tal results show that our method achieves better accuracy
with a relatively fast speed compared to the state-of-the-art
single-feature based methods.

Figure 1. Schematic diagram of our feature integration method.

The rest of this paper is organized as follows: section 2
presents the general framework of our approach; section 3
gives the implementation details; section 4 shows the ex-
perimental results; and some conclusions and discussions
are given in the last section.

2. Learning Algorithm
Our learning algorithm uses a boosting approach. A

number of weak classifiers, each of which corresponds to
one image region, are selected and combined to form a
strong classifier. Assume that from one image region �,
we can extract � types of local features, ���� � � � � ���. A
feature � is a mapping from the image space � to a real
valued �-dimensional space �� .

2.1. General weak classifier
Denote the weak classifier based on the image region �

by �� � � � �. (The sign of ��’s output indicates the
predicted class, � for object and � for non-object, and the
magnitude represents the classification confidence.) If ac-
curacy is the only objective, �� should use all the features
extracted from� for classification. However, for real appli-
cations, speed is another important criterion. We allow the
weak classifier to use a variable subset of features to make
the decision. Denote the power set of ���� � � � � ��� by � ,
and a classifier based on a subset of features by �� , � � � .
We formalize the classifier by

����� � �������� (1)

where � � � � � is a feature type selector. We de-
fine a computational Cost Normalized classification Margin
(CNM) to measure the classification efficiencies of different
subsets of features.

For a sample �, denote its true class label by 	 (� ��).
The classification margin of � on � is defined by 	 	 ����

(assuming � has been normalized to ���� �). The classi-
fication margin represents the discriminative power of the
classifier. Larger margins imply lower generalization error
[28]. The CNM of � on � is defined by

�����
�
�
	����

����
(2)

where ���� is the computational cost of �. We want to use
the subset of features with the highest CNM measure:

����� � ��
���
���

�

��� ���

�
(3)

If �� is approximated by a linear combination of several
base classifiers

�
����

��� , each of which is based on one
feature type, the computations of different features are inde-
pendent, and the computational cost of � is ignorable com-
pared to those of ��� , Equ.3 can be reduced to

����� � ��
���
������

�

���� ���

�
(4)

The expected CNM of ��� on � is

�
�

�����
�
�
�

�

��

�

���� �
�

� � ����
�

(5)

where
� � � ��� � �����.

2.2. Hierarchical weak classifier
In practice, it is unlikely to be able to compute �� be-

fore evaluating any features. (This requires choosing the
best feature types before seeing the image.) In this work,
we propose a hierarchical classification function to approx-
imate ��� . The basic idea is to evaluate the features one by
one, and after each evaluation decide whether it is necessary
to look at more features. Assume we evaluate the features
in the order � ��� � � � � �

�
�. We define ��� �

�
��� ���

in a recursive
way

��� �
�
���� � �� �

�
���

��� �
�
��� �
�
���� �

�
��� �

�
��� �
���

����� ��� � ��� �
�
��� �
���

��� �

�� �
�
���� ���	
���	

(6)
where �� is a single feature based weak classifier, whose
details will be given later in section 2.3, and ��� �

�
��� �

�
��� � is

defined by

��� �
�
��� � �

�
��
����� �

�
���

��� � ��

�
��� �

�
��� �
�
��� � � ��� �

�
��� �
���

��� � �
�
��
����� �

�
���

��� � ��

� (7)

where �� is a threshold of confidence. It is chosen adap-
tively for each feature

�� � ��
���
	

�
������ �

�
���
��� � �

�
�

�

��
����

��

(8)

��� �
�
��� �

�
� represents the part of � where the prediction of

��� �
�
��� �

�
� is confident. Finally we have: if � � �� �

�
�

��� �
�
��� �

�
� � ��� �

�
��� �

���
�, then � � �� ��� � � � � �

�
��, and �� �

��� �
�
��� �

�
�. The expected CNM of our hierarchical weak clas-

sifier is

�
�

����
�
�
�

�
�����

�

��� �

�
�
� � �� �

�

�
(9)

where �� �
�����

�
�

�
�
���

�����
�
�
, and �� � � �� � �� �

�
�. If the

feature types used are fully independent, � is equal to
.
To determine the order in which the features are evalu-

ated, we sort the features according to their expected CNMs.
The feature with higher expected CNM is evaluated earlier.
This is an approximation of the optimal order. We have not
found an algorithm that computes the optimal order in poly-
nomial time w.r.t. the number of feature types. To rank the
heterogeneous features, the classifiers should be defined in
a comparable way. In our work, we use probability ratio
based classifiers (details are given in the next section). For
arbitrary classifier models, some normalization techniques,
such as described in [22], should be applied before ranking.

2.3. Learning weak classifier
Following the real AdaBoost algorithm [26], we define

the single-feature weak classifier �� as a piecewise func-
tion based on a partition of the sample space � into disjoint
subsets ��

�
 � ���
��, which cover all of � . For each
subset of the partition, the output of �� is defined by

� � �
 � �� ��� �
�

�
��

�
�

� � �

�

� � �

	
(10)

where � is a smoothing factor [26], and �� is the
object/non-object sample distribution on the partition ��
�,
i.e. �

� � � �� � �
 � 	 � ���.
In our algorithm, for each feature ��, first we find a pro-

jection �� to map �� to ��� ��. This projection separates the
two classes as much as possible in the 1-D space. For dif-
ferent feature types, the projections can be different, either
linear or non-linear. (Later in section 3, we give the imple-
mentation details of the projections for the features we use.)
Then we do a uniform partition in the 1-D projection space:

���
 �

� � �
�� ������� �

�
� � �

�
�
�

�

�

(11)

and compute the classification function ��� by Equ.10. (In
our experiments, we set � � ��.) Because the outputs of
our classifiers are defined by probability ratio and the fea-
tures are used only for partition, their margins are directly
comparable.

One approximation in classification function learning
is that the sample distributions � used to compute �� �

�

are learned independently. For the hierarchical classifica-
tion function in Equ.6, ideally we should learn the condi-
tional probability distribution given that the samples lie in
� � ��� �

�
��� �

���
�. However, this imposes an exponentially

increasing demand of training data w.r.t. the number of fea-
ture types.

The hierarchical weak classifier corresponds to a hierar-
chical partition of the sample space. Fig.2 gives an illustra-
tion. Most of the sample space is divided only along the first
dimension, while some difficult part is further divided along
the second dimension, and so on. The classification power
of the hierarchical weak classifier with multiple features is
measured by its expected CNM in Equ.9. At each boosting
round, we evaluate several sub-regions. For each of them,
we find the best feature �� for each feature type and com-
bine them to form ��. The �� with the largest expected
CNM is added to the current cascade classifier.

0

0.5

1 0

0.5

1
0

0.5

1

Dim 2
Dim 1

D
im

 3

Figure 2. An illustration of hierarchical partition of sample space.

3. Implementation
The features we use are the edgelet feature [16], the

HOG descriptor [14], and the covariance descriptor [5].
They are all state-of-the-art shape oriented features and
have been applied to object detection problems successfully.
There are many other candidates, however, these three types
of features are sufficient to demonstrate the different aspects
of our approach.

3.1. Feature dependent projection functions
For different feature types, we design different projec-

tion functions in order to get the best classification result.
One edgelet feature can be seen as a short edge template.
The feature response is the matching score between the tem-
plate and the input image, i.e. ����� � � �� ��� ��. Hence,
we just use the identity function as the projection function
for edgelet, denoted by ��.

For HOG descriptor, we do not use the dense sampling
version in [14], instead we use the variable-sized block ver-
sion in [8]. Given a rectangular sub-region, it is divided into
� 	 � equal-sized cells. Within each cell, the edge intensi-
ties at nine orientations are summed. The output is a 36-D
histogram vector, i.e. ���� � � �� �

�	 . We use Linear
Discriminative Analysis (LDA) to find a linear projection
�
 best separating the object and non-object classes:

�
���������
�
� �
 ��
� ��������� �
 (12)

where �
 � �
�	 , and �
 and �
 are normalizing factors

learned from the training set.

Our covariance descriptor is extracted from a 6-D raw
feature vector:

�
� 	
��

��

���

���

�
, where

� and 	 are the pixel location, and ��� ��� ���� ��� are the
first/second order intensity derivatives. The covariance ma-
trices lie in a connected Riemannian manifold [21]. For-
mally ���� � � �� �	�	, where �	�	 is a manifold
embedded in �	�	 . Because the covariance matrix is sym-
metric, the real dimension is � 	 �� � ���� � ��. As the
manifold is not a linear space, it is not appropriate to apply
LDA directly. Following the method in [5], we first map the
covariance matrices to a linear tangent space of the mani-
fold, and then perform LDA in the tangent space. Denote
the mapping to the tangent space by � � �	�	 �� �

� ,
whose definition is

����
�
� �������
����� (13)

where � and are two positive definite symmetric matri-
ces, ��
� is a matrix logarithm operator that maps a matrix
in the manifold to a matrix in the tangent space attached to
 , and ���� is a coordinate mapping operator that converts
the Riemannian metric on the tangent space to the canon-
ical metric in the vector space. More details of � and its
learning can be found in [5]. The projection function of the
covariance descriptor is defined by

�����������
�
� �� ���� ������������ �� (14)

where �� � �

� , and �� and �� are normalizing factors

learned from the training set.

3.2. Computational costs of features
The computational costs of the three types of features

are very different. Computing an edgelet response, which
is basically edge template matching, requires mainly 16-
bit integer operations; computing the histograms of HOG
through integral images requires mainly 32-bit integer op-
erations; computing a covariance matrix through integral
images requires 32-bit integer and 64-bit floating point op-
erations. The projection �
 is an inner product operation
of two floating point vectors; the complexity of �� is domi-
nated by the matrix logarithm operator in �, which requires
singular value decomposition (SVD). At first, we used the
OpenCV SVD function and evaluated the speed of �������
for the three features. The ratio of their average speeds is
about ����� � ���� � ���� � � � �� � ��. This order is con-
sistent with those reported in the original papers [16, 14, 5].
In order to speedup, we replaced the OpenCV SVD with an
implementation in the Intel IPP library [30]. This results
in a speed ratio about 1:10:12. We have done this evalua-
tion on several versions of Intel CPUs. The ratio is stable.
Besides �������, computing the edge intensity images of
different orientations and the integral images brings some
overhead. However, this overhead, which is partially shared
among different types of features, is relatively small.

3.3. Selecting the best weak classifiers
Similar to [5, 8], we randomly sample 200 sub-regions at

each boosting round, and search for the locally best edgelet,
HOG, and covariance features. For each region �, the lo-
cal search is done by randomly evaluating 40 edgelets, 5
HOG features, and 5 covariance features whose supporting
regions ���� have large cover of �. For an edgelet fea-
ture, ���� is the bounding box of the edge template; for the
HOG and covariance descriptors���� is the rectangular re-
gion from which the histograms are computed. We sample
more edgelet features than the other two types, because the
edgelet feature pool is bigger than those of the other two.

During training, only for a part of the training set, the in-
termediate representation (including the edge intensity im-
ages and the integral images) is computed and stored in
memory. At each boosting round, the samples with buffered
intermediate representation are used to select the good fea-
tures. After features are fixed, all the training samples are
used to refine the classification functions.

4. Experimental Results
We apply our approach to two classes of objects, pedes-

trians and cars. These two classes are important for many
applications, such as visual surveillance.

4.1. Performance on pedestrians
For pedestrians we use the INRIA data set [14]1, which

contains 2,478 positive samples and 1,218 negative images
for training, and 1,128 positive samples and 453 negative
images for testing. The pedestrian sample size is ��	 ���
pixels. This set covers multiple viewpoints, and a large va-
riety of poses.

For this set, we learn a cascade structured classifier that
consists of 800 weak classifiers. Fig.3 shows the ROC
curves of our method and some previous ones. (The ROC
curve of our classifier is generated by changing the number
of layers used.) From Fig.3, it can be seen that compared to
the edgelet-only [2], HOG-only [8], and covariance-only [5]
cascades, our hybrid-feature cascade achieves better perfor-
mance. On average, our cascade classifier searches around
24,000 sub-windows per second on a 3.0GHz Intel CPU.
Fig.8(a) shows some example results of pedestrian detec-
tion.

4.2. Feature statistics
Fig.4 shows the first weak classifier learned for pedes-

trian detection with its selected features and the correspond-
ing classification functions. It can be seen that the covari-
ance descriptor has the best discriminative power. However,
due to its high computational cost, it is only the second fea-
ture of the weak classifier after an edgelet, before a HOG.

For the cascade pedestrian detector learned from the
INIRIA set, first we count the frequencies of different types

1http://pascal.inrialpes.fr/data/human/

of features selected as the first/second/third feature in the
weak classifiers, shown in Fig.5. It can be seen that though
HOG and covariance descriptors are stronger than edgelet
for classification, they are much more computationally ex-
pensive so that they are used as the second or third feature
most of the time.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

70

75

80

85

90

95

100

False Positive Per Window

D
et

ec
tio

n
R

at
e

(%
)

HOG SVM by Dalal & Triggs [9]
HOG boosting by Zhu et al. [7]
Covar SVM by Tuzel et al. [5]
Edgelet Boosting by Wu & Nevatia [15]
Hybrid Feature Cascade

Figure 3. Pedestrian detection performance on the INRIA set. (For
detection tasks, precision-recall curves are better to demonstrate
the performance. However, in order to compare with previous
methods, here we use detection rate and false positive per window
for pedestrians.)

Next, we count the frequencies of different types of fea-
tures that are evaluated per sub-window. This is a good
hardware-independent metric to compare the speeds of dif-
ferent methods; Table 1 shows the results. Tuzel et al.
[5] report that on average the HOG-only cascade requires
evaluating 15.62 HOG features per sub-window and the
covariance-only cascade needs 8.45 covariance descriptors
per sub-window. For edgelets we do the evaluation our-
selves, as there are no such results reported in the original
paper. The edgelet-only cascade requires about 28 edgelets
per sub-window. Based on the speed ratio of the three types
of features, it can be seen that our hybrid-feature detector
is faster than the HOG-only and covariance-only detectors,
but slower than the edgelet-only detector.

Last, we count the evaluation frequencies for the first,
second, and third features, shown in Table.2. It can be seen
that the third features are rarely used. The first features are
mostly edgelets, which are designed to encode the local sil-
houette explicitly but are relatively sensitive to small trans-
formations, such as translation and rotation. The second and
third features are mostly HOG and covariance descriptors,
which encode the statistics of a sub-region and are robust
to small transforms, but do not encode which pixels actu-
ally contribute to the histogram bins; very different shapes

could result in the same histogram. Their complementarity
is natural.

Figure 4. The first weak classifier learned for pedestrians and its
selected features. The first feature evaluated is an edgelet corre-
sponding to the head-shoulder contour of human body; the second
feature is a covariance descriptor whose supporting region sur-
rounds the head-should part; the third feature is a HOG descrip-
tor. The �-axis is the index of the histogram bins, i.e. the partition
along the projection direction. The �-axis is the classifier output.

1 2 3
0

20

40

60

80

100

Feature order

P
er

ce
nt

ag
e

(%
)

Edgelet
HOG
Covar

Figure 5. Frequencies of different feature types as the first, second,
third feature in the hierarchical weak classifiers.

Feature type Edgelet HOG Covar

Evaluation frequency per window 15.25 2.6 2.05

Table 1. Evaluation frequencies of different feature types.

4.3. Hierarchical vs. sequential weak classifier
We compare the performance of our hierarchical feature

combination method with other two combination strategies:
sequential summation and sequential maximum. Sequential
summation is defined by

��� �
�
��� ���

��� �
��

���
�� �

�
��� (15)

and sequential maximum is defined by

��� �
�
��� ���

��� � ��� ��� (16)

where �� � ��
���
� �
�

������ �
�
���
����. Both of these strategies

require evaluating all the features before making a predic-
tion. They can be considered the accuracy upper bound of
our hierarchical strategy. We take the first 10 features of the
single-threshold pedestrian classifier in section 4.1, apply
these three combination strategies and evaluate the classi-
fication performance on the test set. Fig.6 shows the ROC
curves. It can be seen that the performance of the two se-
quential strategies is almost the same, and slightly better
than that of our hierarchical strategy, but they are about five
times slower than our method.

Feature order First Second Third

Evaluation frequency per window 16.33 2.66 0.91

Table 2. Evaluation frequencies of the first, second, third features.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

False positive rate (%)

T
ru

e
po

si
tiv

e
ra

te
 (

%
)

Hierarchical
Sequential sum
Sequential max

Figure 6. Comparison of different feature combination strategies.

4.4. Performance on cars
For car detection, we manually labeled 4,000 car sam-

ples of various models and different viewpoints from the
MIT street scene images2 [19], and collected 7,000 back-
ground images from the Internet as our training set. The
car samples are normalized to ��	 �� pixels. As the inner-
class variation of multi-view cars is large, we train a tree
structured detector with four leaves by the Cluster Boosting
Tree (CBT) method in [2]. This is is an enhanced version
of cascade.

For testing, we collected 390 car images from the PAS-
CAL 2006 challenge data set [13]. This set includes multi-
view cars of different models. For evaluation, we only con-
sider the cars higher than 32 pixels. There are overall 481
counted cars in this set. The data set contains two differ-
ent types of images, close shots and mid/long-distant shots.
In the close shot images, we detect cars from 250 to 500
pixels high; in the mid/long-distant shot images, we detect
cars from 32 to 250 pixels high. Following the PASCAL
challenge, buses are not included in the car class. Positive
responses on buses are counted as false alarms. Fig.7 shows
the precision-recall curve of our method on this set. The

2http://cbcl.mit.edu/software-datasets/
streetscenes/

equal precision-recall rate is about ���. Hoiem et al. [3]
use 150 car images from the PASCAL 2006 data for test-
ing and their method achieves an equal precision-recall rate
of about ���. The highest reported results in the PASCAL
2006 and 2007 challenges have the equal precision-recall
rates of about ��� and ��� respectively [29]. However,
these rates are for the whole test set, which is much more
difficult. Fig.8(b) shows some example results of car detec-
tion.

0.1 0.2 0.3 0.4 0.5 0.6
0.7

0.75

0.8

0.85

0.9

0.95

1 − Precision

R
ec

al
l

Figure 7. Performance of multi-view car detection.

5. Conclusion and Discussion
We described a framework to integrate different types

of features for object detection. We learn strong object
classifiers by boosting weak classifiers. Each weak clas-
sifier is based on several different types of features, which
are ranked according to their speed normalized classifica-
tion margins. The weak classifier makes the prediction by
examining the feature types one by one to optimize the
discrimination-efficiency tradeoff.

As long as the features used are not highly correlated,
combination of them should result in better accuracy than
by using any single one of them. However, if one feature
truly dominates another one on all samples but is slower, it
is possible that the accuracy of the combination is higher
than the weaker one but lower than the stronger one. We
demonstrated our approach on two object classes, pedestri-
ans and cars, with three feature types, edgelet, HOG and
covariance descriptors. However, our method is not limited
to these types of features; new features could be readily in-
tegrated into the framework.

Acknowledgements: This research was funded, in part, by
the U.S. Government VACE program.

References

[1] M. Varma, and D. Ray. Learning the Discriminative Power-
Invariance Trade-off. ICCV 2007. 2

[2] B. Wu, and R. Nevatia. Cluster Boosted Tree Classifier for
Multi-View, Multi-Pose Object Detection. ICCV 2007. 1, 5,
6

[3] D. Hoiem, C. Rother, and J. Winn. 3D LayoutCRF for Multi-
View Object Class Recognition and Segmentation. CVPR
2007. 1, 7

[4] P. Sabzmeydani and G. Mori. Detecting Pedestrians by Learn-
ing Shapelet Features. CVPR 2007. 1

[5] O. Tuzel, F. Porikli, and Peter Meer. Human Detection via
Classification on Riemannian Manifolds. CVPR 2007. 1, 2,
4, 5

[6] D. M. Gavrila. A Bayesian, Exemplar-based Approach to
Hierarchical Shape Matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(8): 1408-1421, 2007.
1

[7] J. Mutch, and D. Lowe. Multiclass Object Recognition with
Sparse, Localized Features. CVPR 2006. 1

[8] Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng. Fast Human
Detection Using a Cascade of Histograms of Oriented Gradi-
ents. CVPR 2006. 4, 5

[9] A. Opelt, A. Pinz, and A. Zisserman. A Boundary-Fragment-
Model for Object Detection. ECCV 2006. 1

[10] N. Dalal, B. Triggs, and C. Schmid. Human Detection Using
Oriented Histograms of Flow and Appearance. ECCV 2006.
1, 2

[11] J. Shotton, J. Winn, C. Rother, and A.Criminisi. Texton-
Boost: Joint Appearance, Shape and Context Modeling for
Multi-Class Object Recognition and Segmentation. ECCV
2006. 1, 2

[12] C. Huang, H. Ai, Y. Li, and S. Lao. Learning Sparse Features
in Granular Space for Multi-View Face Detection. FG 2006.
1, 2

[13] M. Everingham, A. Zisserman, C. Williams, and L. V.
Gool. The PASCAL Visual Object Classes Challenge 2006
(VOC2006) Results. Technical report, 2006. 6

[14] N. Dalal, and B. Triggs. Histograms of Oriented Gradients
for Human Detection. CVPR 2005. 1, 2, 4, 5

[15] B. Leibe, E. Seemann, and B. Schiele. Pedestrian Detection
in Crowded Scenes. CVPR 2005. 1

[16] B. Wu, and R. Nevatia. Detection of Multiple, Partially Oc-
cluded Humans in a Single Image by Bayesian Combination
of Edgelet Part Detectors. ICCV 2005. 1, 2, 4

[17] C. Mikolajczyk, C. Schmid, and A. Zisserman. Human de-
tection based on a probabilistic assembly of robust part detec-
tors. ECCV 2004. 1

[18] B. Leibe, A. Leonardis, and B. Schiele. Combined Ob-
ject Categorization and Segmentation with an Implicit Shape
Model. Workshop on Statistical Learning in Computer Vision,
in conjunction with ECCV 2004. 1

[19] B. Leung. Component-based Car Detection in Street Scene
Images. Master’s Thesis, EECS, MIT, 2004. 6

[20] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using
patterns of motion and appearance. ICCV 2003. 1, 2

[21] W. M. Boothby. An Introduction to Differentiable Manifolds
and Riemannian Geometry. Academic Press, 2002. 4

[22] H. Altincay, and M. Demirekler. Post-processing of Clas-
sifier Outputs in Multiple Classifier Systems. Lecture Notes
in Computer Science, LNCS 2364, Springer Verlag, pp. 159-
168, 2002. 3

(a) Example results of pedestrian detection

(b) Example results of car detection

Figure 8. Example detection results.

[23] P. Viola, and M. Jones. Rapid Object Detection Using a
Boosted Cascade of Simple Features. CVPR 2001. 1, 2

[24] D. Gavrila. Pedestrian detection from a moving vehicle.
ECCV 2000. 1

[25] H. Schneiderman, and T. Kanade. A Statistical Method for
3D Object Detection Applied to Faces and Cars. CVPR 2000.
1

[26] R. E. Schapire and Y. Singer. Improved Boosting Algorithms
Using Confidence-rated Predictions. Machine Learning, 37:
297-336, 1999. 3

[27] C. Papageorgiou, T. Evgeniou, and T. Poggio. A Trainable
Pedestrian Detection System. In: Proc. of Intelligent Vehicles
1998. pp. 241-246 1

[28] R. E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boost-
ing the Margin: A New Explanation for the Effectiveness of

Voting Methods. The Annals of Statistics, 26(5): 1651-1686,
1998 3

[29] http://www.pascal-network.org/
challenges/VOC/voc2007/workshop/index.
html 7

[30] http://www.intel.com/cd/software/
products/asmo-na/eng/302910.htm 4

