Arabic Numbers, Digits, Handwritten, Numeral Recognition

Chapter Contents (Back)
OCR. Digits. Character Recognition. Handwritten Digits.

Bakis, R., Herbst, N.M., and Nagy, G.,
A Experimental Study of Machine Recognition of Hand-Printed Numerals,
SSC(4), No. 2, July 1968, pp. 119-132. N-Tuple Matching system for OCR. BibRef 6807

Siy, P., Chen, C.S.,
Fuzzy Logic for Handwritten Numeral Character Recognition,
SMC(4), 1974, pp. 570-575. BibRef 7400

Pavlidis, T., and Ali, F.,
Computer Recognition of Handwritten Numerals by Polygonal Approximations,
SMC(7), 1975, pp. 610-614. Polygonal Approximation. BibRef 7500

Impedovo, S., Marangelli, B., Plantamura, V.L.,
Real Time Recognition of Handwritten Numerals,
SMC(6), No. 2, February 1976, pp. 145-148. BibRef 7602

Impedovo, S., Fanelli, A.M., Marangelli, B.,
A Fourier Descriptor Set for Recognizing Non-Stylized Numerals,
SMC(8), No. 8, August 1978, pp. 640-645. BibRef 7808

Impedovo, S., Fanelli, A.M.,
Interactive System for Hand-Written Numeral Classification Based on Fourier Descriptors,
CIAP80(135-139). BibRef 8000

Impedovo, S., Abbattista, N.,
Hand-Written Numeral Recognition : The Organization Degree Measurement,
ICPR82(40-43). BibRef 8200

Dimauro, G., Impedovo, S., Modugno, R., Pirlo, G.,
Numeral recognition by weighting local decisions,
IEEE Abstract. 0311
See also Multi-expert verification of hand-written signatures. BibRef

Dimauro, G., Impedovo, S., Pirlo, G., Salzo, A.,
Zoning design for handwritten numeral recognition,
CIAP97(II: 592-599).
WWW Version. 9709

Impedovo, S., Dimauro, G.,
An interactive system for the selection of handwritten numeral classes,
ICPR90(I: 563-566).
IEEE DOI Link 9006

Impedovo, S., Pirlo, G.,
Class-oriented recognizer design by weighting local decisions,
IEEE Abstract. 0310

Shridhar, M., Badreldin, A.,
Handwritten Numeral Recognition by Tree Classification Methods,
IVC(2), No. 3, August 1984, pp. 143-149.
WWW Version. BibRef 8408
A Tree Classification Algorithm for Handwritten Character Recognition,
ICPR84(615-618). BibRef

Shridhar, M., Badreldin, A.,
Recognition of Isolated and Simply Connected Handwritten Numerals,
PR(19), No. 1, 1986, pp. 1-12.
WWW Version. BibRef 8600

Shridhar, M., Badreldin, A.,
Context-Directed Segmentation Algorithm for Handwritten Numeral Strings,
IVC(5), No. 1, February 1987, pp. 3-9.
WWW Version. BibRef 8702

Shridhar, M., Badreldin, A.,
A High-Accuracy Syntactic Recognition Algorithm for Handwritten Numerals,
SMC(15), 1985, pp. 152-158. BibRef 8500

Huang, J.S., Chuang, K.,
Heuristic Approach to Handwritten Numeral Recognition,
PR(19), No. 1, 1986, pp. 15-19.
WWW Version. BibRef 8600

Ray, S.,
A Heuristic Noise Reduction Algorithm Applied to Handwritten Numeric Characters,
PRL(7), 1988, pp. 9-12. BibRef 8800

Baptista, G., Kulkarni, K.M.,
A High Accuracy Algorithm for Recognition of Handwritten Numerals,
PR(21), No. 4, 1988, pp. 287-291.
WWW Version. BibRef 8800

Gader, P.D., Forester, B., Ganzberger, M., Billies, A., Mitchell, B., Whalen, M., and Yocum, T.,
Recognition of Handwritten Digits Using Template and Model Matching,
PR(24), No. 5, 1991, pp. 421-431.
WWW Version. BibRef 9100

Westall, J.M., and Narasimha, M.S.,
Vertex Directed Segmentation of Handwritten Numerals,
PR(26), No. 10, October 1993, pp. 1473-1486.
WWW Version. BibRef 9310

Gupta, A., Nagendraprasad, M.V., Liu, A., Wang, P.S.P., and Ayyadurai, S.,
An Integrated Architecture for Recognition of Totally Unconstrained Handwritten Numerals,
PRAI(7), No. 4, 1993, pp. 757-773. BibRef 9300

Yan, H.,
Handwritten Digit Recognition Using an Optimized Nearest-Neighbor Classifier,
PRL(15), No. 2, February 1994, pp. 207-211. BibRef 9402

Yan, H.[Hong],
Prototype optimization for nearest neighbor classifiers using a two-layer perceptron,
PR(26), No. 2, February 1993, pp. 317-324.
WWW Version. 0401

AbuHaiba, I.S.I., Ahmed, P.,
A fuzzy graph theoretic approach to recognize the totally unconstrained handwritten numerals,
PR(26), No. 9, September 1993, pp. 1335-1350.
WWW Version. 0401

Chi, Z.R., Yan, H.,
Handwritten Numeral Recognition Using a Small Number of Fuzzy Rules with Optimized Defuzzification Parameters,
NeurNet(8), No. 5, 1995, pp. 821-827. BibRef 9500

Chi, Z.R., Suters, M., Yan, H.,
Handwritten Digit Recognition Using Combined ID3-Derived Fuzzy Rules and Markov-Chains,
PR(29), No. 11, November 1996, pp. 1821-1833.
WWW Version. 9612

Chi, Z.[Zheru], Wu, J.[Jing], Yan, H.[Hong],
Handwritten numeral recognition using self-organizing maps and fuzzy rules,
PR(28), No. 1, January 1995, pp. 59-66.
WWW Version. 0401

Cheng, D.H., Yan, H.,
Recognition of Handwritten Digits Based on Contour Information,
PR(31), No. 3, March 1998, pp. 235-255.
WWW Version. 9802

Hu, J.M., Yan, H.,
Structural Primitive Extraction and Coding for Handwritten Numeral Recognition,
PR(31), No. 5, May 1998, pp. 493-509.
WWW Version. 9805

Hu, J.M.[Jian-Ming], Yan, H.[Hong],
A Model-Based Segmentation Method for Handwritten Numeral Strings,
CVIU(70), No. 3, June 1998, pp. 383-403.
DOI Link See also hybrid method for unconstrained handwritten numeral recognition by combining structural and neural gas classifiers, A. BibRef 9806

Hu, J.M., Yu, D.G., Yan, H.,
A Multiple Point Boundary Smoothing Algorithm,
PRL(19), No. 8, June 1998, pp. 657-668. 9808

Hu, J.M.[Jian-Ming], Yu, D.G.[Dong-Gang], Yan, H.[Hong],
Construction of partitioning paths for touching handwritten characters,
PRL(20), No. 3, March 1999, pp. 293-303. BibRef 9903

Yu, D.G.[Dong-Gang], Yan, H.[Hong], Hu, J.M.[Jian-Ming],
Algorithms for Partitioning Path Construction of Handwritten Numeral Strings,
ICPR98(Vol I: 372-374).
IEEE DOI Link 9808

Wakahara, T.,
Shape-Matching Using LAT and its Application to Handwritten Numeral Recognition,
PAMI(16), No. 6, June 1994, pp. 618-629.
IEEE DOI Link BibRef 9406

Wakahara, T.,
Multi-template GAT correlation for character recognition with a limited quantity of data,
ICDAR05(II: 824-828).
IEEE DOI Link 0508
Shape matching using GAT correlation against nonlinear distortion and its application to handwritten numeral recognition,
IEEE Abstract. 0311
See also Online Cursive Kanji Character Recognition Using Stroke Based Affine Transformation. BibRef

Yamashita, Y.[Yukihiko], Wakahara, T.[Toru],
Subspace Methods with Globally/Locally Weighted Correlation Matrix,
IEEE DOI Link 1008
See also Affine-Invariant Recognition of Handwritten Characters via Accelerated KL Divergence Minimization. BibRef

Wakahara, T.[Toru], Yamashita, Y.[Yukihiko],
k-NN classification of handwritten characters via accelerated GAT correlation,
PR(47), No. 3, 2014, pp. 994-1001.
Elsevier DOI Link 1312
Earlier: FHR12(143-148).
IEEE DOI Link 1302
Affine-Invariant Recognition of Handwritten Characters via Accelerated KL Divergence Minimization,
IEEE DOI Link 1111
Multi-template GAT/PAT Correlation for Character Recognition with a Limited Quantity of Data,
IEEE DOI Link 1008
Affine-invariant template matching BibRef

Bailey, R.R., Srinath, M.,
Orthogonal Moment Features for Use with Parametric and Nonparametric Classifiers,
PAMI(18), No. 4, April 1996, pp. 389-399.
IEEE DOI Link Moments. 9605

Heikkonen, J., Mantynen, N.,
A Computer Vision Approach to Digit Recognition on Pulp Bales,
PRL(17), No. 4, April 4 1996, pp. 413-419. 9605

Revow, M., Williams, C.K.I., Hinton, G.E.,
Using Generative Models for Handwritten Digit Recognition,
PAMI(18), No. 6, June 1996, pp. 592-606.
IEEE DOI Link 9607

Hinton, G.E., Dayan, P., Revow, M.,
Modeling the Manifolds of Images of Handwritten Digits,
TNN(8), No. 1, January 1997, pp. 65-74. 9701

Mayraz, G.[Guy], Hinton, G.E.[Geoffrey E.],
Recognizing Handwritten Digits Using Hierarchical Products of Experts,
PAMI(24), No. 2, February 2002, pp. 189-197.
IEEE DOI Link 0202

Favata, J.T., Srikantan, G.,
A Multiple Feature/Resolution Approach to Handprinted Digit and Character-Recognition,
IJIST(7), No. 4, Winter 1996, pp. 304-311. 9612

Gorski, N.D., Gorskaya, L.M.,
Estimation of Prior Probabilities for Numeral Recognition,
PRL(18), No. 1, January 1997, pp. 97-103. 9704

Ha, T.M., Bunke, H.,
Off-Line, Handwritten Numeral Recognition by Perturbation Method,
PAMI(19), No. 5, May 1997, pp. 535-539.
IEEE DOI Link 9705

Ha, T.M.,
Efficient detection of abnormalities in large OCR databases,
IEEE DOI Link 9708

Ha, T.M., Zimmermann, M., Bunke, H.,
Off-Line Handwritten Numeral String Recognition by Combining Segmentation-Based and Segmentation-Free Methods,
PR(31), No. 3, March 1998, pp. 257-272.
WWW Version. 9802

Chiang, J.H., Gader, P.D.,
Recognition of Handprinted Numerals in Visa(R) Card Application Forms,
MVA(10), No. 3, 1997, pp. 144-149.
HTML Version. 9709

Amit, Y.[Yali], Geman, D.[David], Wilder, K.[Kenneth],
Joint Induction of Shape Features and Tree Classifiers,
PAMI(19), No. 11, November 1997, pp. 1300-1305.
IEEE DOI Link 9712
Generate description using large family of binary features (every local geometric arrangement). Apply to NIST dataset. BibRef

Jain, A.K.[Anil K.], Zongker, D.[Douglas],
Representation and Recognition of Handwritten Digits Using Deformable Templates,
PAMI(19), No. 12, December 1997, pp. 1386-1390.
IEEE DOI Link 9712
Template Matching. BibRef

Hamamoto, Y., Uchimura, S., Watanabe, M., Yasuda, T., Mitani, Y., Tomita, S.,
A Gabor Filter Based Method for Recognizing Handwritten Numerals,
PR(31), No. 4, April 1998, pp. 395-400.
WWW Version. 9803

Watanabe, M., Hamamoto, Y., Yasuda, T., Tomita, S.,
Normalization techniques of handwritten numerals for Gabor filters,
IEEE DOI Link 9708

Hamamoto, Y., Uchimura, S., Watanabe, M., Yasuda, T., Tomita, S.,
Recognition of Handwritten Numerals Using Gabor Features,
ICPR96(III: 250-253).
IEEE DOI Link 9608
(Yamaguchi Univ., J) BibRef

Reddy, N.V.S., Nagabhushan, P.,
A Connectionist Expert System Model for Conflict Resolution in Unconstrained Handwritten Numeral Recognition,
PRL(19), No. 2, February 1998, pp. 161-169. 9808

Kim, D.J.[Dai-Jin], Bang, S.Y.[Sung-Yang],
A Handwriting Numeral Character Classification Using Tolerant Rough Set,
PAMI(22), No. 9, September 2000, pp. 923-937.
IEEE DOI Link 0010

Lu, Y., Schlosser, S., Janeczko, M.,
Fourier descriptors and handwritten digit recognition,
MVA(6), No. 1, 1993, pp. 25-34. BibRef 9300

Lou, Z., Liu, K., Yang, J.Y., Suen, C.Y.,
Rejection Criteria and Pairwise Discrimination of Handwritten Numerals Based on Structural Features,
PAA(2), No. 3, 1999, pp. 228-238. BibRef 9900

Chen, Y.K.[Yi-Kai], Wang, J.F.[Jhing-Fa],
Segmentation of Single- or Multiple-Touching Handwritten Numeral String Using Background and Foreground Analysis,
PAMI(22), No. 11, November 2000, pp. 1304-1317.
IEEE DOI Link 0012
Segmentation of Handwritten Connected Numeral String Using Background and Foreground Analysis,
ICPR00(Vol II: 598-601).
IEEE DOI Link 0009
Skeleton approach. BibRef

Portegys, T.E.[Thomas E.],
Recognizing Hand-Printed Digits with a Distance Quasi-Metric,
CVIU(80), No. 3, December 2000, pp. 289-294.
DOI Link 0012

Saradhi, V.V.[V. Vijaya], Murty, M.N.[M. Narasimha],
Bootstrapping for efficient handwritten digit recognition,
PR(34), No. 5, May 2001, pp. 1047-1056.
WWW Version. 0102

Kim, K.K.[Kye Kyung], Kim, J.H.[Jin Ho], Suen, C.Y.[Ching Y.],
Segmentation-based recognition of handwritten touching pairs of digits using structural features,
PRL(23), No. 1-3, January 2002, pp. 13-24.
Elsevier DOI Link 0201

Ping, Z.[Zhang], Lihui, C.[Chen],
A novel feature extraction method and hybrid tree classification for handwritten numeral recognition,
PRL(23), No. 1-3, January 2002, pp. 45-56.
Elsevier DOI Link 0201

Kim, H.C.[Hyun-Chul], Kim, D.J.[Dai-Jin], Bang, S.Y.[Sung Yang],
A numeral character recognition using the PCA mixture model,
PRL(23), No. 1-3, January 2002, pp. 103-111.
Elsevier DOI Link 0201
See also Face recognition using the mixture-of-eigenfaces method. BibRef

Shi, M.[Meng], Fujisawa, Y.[Yoshiharu], Wakabayashi, T.[Tetsushi], Kimura, F.[Fumitaka],
Handwritten numeral recognition using gradient and curvature of gray scale image,
PR(35), No. 10, October 2002, pp. 2051-2059.
WWW Version. 0206

Shi, M.[Meng], Ohyama, W.[Wataru], Wakabayashi, T., Kimura, F.,
Clustering with projection distance and pseudo Bayes discriminant function for handwritten numeral recognition,
IEEE DOI Link 0109

Wakabayashi, T., Shi, M., Ohyama, W., Kimura, F.,
Accuracy improvement of handwritten numeral recognition by mirror image learning,
IEEE DOI Link 0109

Teow, L.N.[Loo-Nin], Loe, K.F.[Kia-Fock],
Robust vision-based features and classification schemes for off-line handwritten digit recognition,
PR(35), No. 11, November 2002, pp. 2355-2364.
WWW Version. 0208
Handwritten Digit Recognition with a Novel Vision Model that Extracts Linearly Separable Features,
CVPR00(II: 76-81).
IEEE DOI Link 0005

Chen, G.Y., Bui, T.D., Krzyzak, A.,
Contour-based handwritten numeral recognition using multiwavelets and neural networks,
PR(36), No. 7, July 2003, pp. 1597-1604.
WWW Version. 0304

Chen, G.Y., Bui, T.D., Krzyzak, A.,
Rotation invariant pattern recognition using ridgelets, wavelet cycle-spinning and Fourier features,
PR(38), No. 12, December 2005, pp. 2314-2322.
WWW Version. 0510

Yang, L.H.[Li-Hua], Suen, C.Y.[Ching Y.], Bui, T.D.[Tien D.], Zhang, P.[Ping],
Discrimination of similar handwritten numerals based on invariant curvature features,
PR(38), No. 7, July 2005, pp. 947-963.
WWW Version. 0505

Zhang, P., Bui, T.D., Suen, C.Y.,
Hybrid feature extraction and feature selection for improving recognition accuracy of handwritten numerals,
ICDAR05(I: 136-140).
IEEE DOI Link 0508
Earlier: A1, A3, A2:
Multi-modal nonlinear feature reduction for the recognition of handwritten numerals,
IEEE Abstract. 0408

Bellili, A., Gilloux, M., Gallinari, P.,
An MLP-SVM combination architecture for offline handwritten digit recognition: Reduction of recognition errors by Support Vector Machines rejection mechanisms,
IJDAR(5), No. 4, July 2003, pp. 244-252.
HTML Version. 0308
An hybrid MLP-SVM handwritten digit recognizer,
IEEE DOI Link 0109

Goltsev, A.[Alexander], Rachkovskij, D.[Dmitri],
Combination of the assembly neural network with a perceptron for recognition of handwritten digits arranged in numeral strings,
PR(38), No. 3, March 2005, pp. 315-322.
WWW Version. 0412

Parkins, A.D., Nandi, A.K.,
Method for calculating first-order derivative based feature saliency information in a trained neural network and its application to handwritten digit recognition,
VISP(152), No. 2, April 2005, pp. 137-147.
DOI Link 0510

Sung, J.M.[Jae-Mo], Bang, S.Y.[Sung-Yang], Choi, S.J.[Seung-Jin],
A Bayesian network classifier and hierarchical Gabor features for handwritten numeral recognition,
PRL(27), No. 1, 1 January 2006, pp. 66-75.
WWW Version. 0512

Sung, J.M.[Jae-Mo], Ghahramani, Z.[Zoubin], Bang, S.Y.[Sung-Yang],
Latent-Space Variational Bayes,
PAMI(30), No. 12, December 2008, pp. 2236-2242.
IEEE DOI Link 0811

Sung, J.M.[Jae-Mo], Bang, S.Y.[Sung-Yang],
Hierarchical Bayesian Network for Handwritten Digit Recognition,
CVS03(396 ff).
HTML Version. 0306

Savas, B.[Berkant], Eldén, L.[Lars],
Handwritten digit classification using higher order singular value decomposition,
PR(40), No. 3, March 2007, pp. 993-1003.
WWW Version. 0611
Tensors; Higher order singular value decomposition; Tensor approximation; Least squares BibRef

Hoffmann, H.[Heiko],
Kernel PCA for novelty detection,
PR(40), No. 3, March 2007, pp. 863-874.
WWW Version. 0611
Kernel method; Novelty detection; PCA; Handwritten digit; Breast cancer BibRef

Suresh, R.M., Arumugam, S.,
Fuzzy technique based recognition of handwritten characters,
IVC(25), No. 2, February 2007, pp. 230-239.
WWW Version. 0701
Fuzzy logic; Fuzzy context-free grammar; Preprocessing; Polygonal approximation; Segmentation; Labeling; Handwritten numerals; Modified parsing algorithm BibRef

Lauer, F.[Fabien], Suen, C.Y.[Ching Y.], Bloch, G.[Gerard],
A trainable feature extractor for handwritten digit recognition,
PR(40), No. 6, June 2007, pp. 1816-1824.
WWW Version. 0704
Character recognition; Support vector machines; Convolutional neural networks; Feature extraction; Elastic distortion BibRef

Hanmandlu, M.[Madasu], Murthy, O.V.R.[O.V. Ramana],
Fuzzy model based recognition of handwritten numerals,
PR(40), No. 6, June 2007, pp. 1840-1854.
WWW Version. 0704
Box approach; Fuzzy sets; Membership function; Structural parameters; Entropy BibRef

Hanmandlu, M.[Madasu], Yusof, M.H.M.[Mohammad Hafizuddin Mohd], Madasu, V.K.[Vamsi Krishna],
Fuzzy Modeling Based Recognition of Multi-font Numerals,
HTML Version. 0310

Zhang, P.[Ping], Bui, T.D.[Tien D.], Suen, C.Y.[Ching Y.],
A novel cascade ensemble classifier system with a high recognition performance on handwritten digits,
PR(40), No. 12, December 2007, pp. 3415-3429.
WWW Version. 0709
Handwritten digit recognition; Hybrid feature extraction; Cascade classifier system; Rejection criteria; Ensemble classifier; Gating networks; Neural networks; Genetic algorithms BibRef

Zhou, J.[Jie], Peng, H.[Hanchuan], Suen, C.Y.[Ching Y.],
Data-driven decomposition for multi-class classification,
PR(41), No. 1, January 2008, pp. 67-76.
WWW Version. 0710
Multi-class classification; Error Correcting Output Coding (ECOC); Data-driven Error Correcting Output Coding (DECOC); Support vector machine; Handwritten numeral recognition; Gene expression classification BibRef

Kherallah, M.[Monji], Haddad, L.[Lobna], Alimi, A.M.[Adel M.], Mitiche, A.[Amar],
On-line handwritten digit recognition based on trajectory and velocity modeling,
PRL(29), No. 5, 1 April 2008, pp. 580-594.
WWW Version. 0802
Handwriting modeling; Stroke overlapping; Elliptic trajectory modeling; Beta velocity modeling; Digit recognition BibRef

Vellasques, E., Oliveira, L.S., de Souza Britto, Jr., A.[Alceu], Koerich, A.L., Sabourin, R.,
Filtering segmentation cuts for digit string recognition,
PR(41), No. 10, October 2008, pp. 3044-3053.
WWW Version. 0808
Segmentation; Filtering BibRef

Ko, A.H.R.[Albert Hung-Ren], Cavalin, P.R.[Paulo Rodrigo], Sabourin, Jr., R.[Robert], de Souza Britto, Jr., A.[Alceu],
Leave-One-Out-Training and Leave-One-Out-Testing Hidden Markov Models for a Handwritten Numeral Recognizer: The Implications of a Single Classifier and Multiple Classifications,
PAMI(31), No. 12, December 2009, pp. 2168-2178.
IEEE DOI Link 0911
Generally HMM have a problem with noise. Improves recognition from 98% to 98.88% See also Evaluation of incremental learning algorithms for HMM in the recognition of alphanumeric characters. BibRef

Oliveira, L.S., de Souza Britto, Jr., A.[Alceu], Sabourin, R.,
A synthetic database to assess segmentation algorithms,
ICDAR05(I: 207-211).
IEEE DOI Link 0508

Ng, G.S.[Geok See], Erdogan, S.[Sevki], Shi, D.M.[Da-Ming], Wahab, A.[Abdul],
Insight Of Fuzzy Neural Systems In The Application Of Handwritten Digits Classification,
IJIG(6), No. 4, October 2006, pp. 511-532. 0610

Abdel Azeem, S.[Sherif], El-Sherif, E.[Ezzat],
Arabic handwritten digit recognition,
IJDAR(11), No. 3, December 2008, pp. xx-yy.
Springer DOI Link 0804

Lian, H.[Heng],
Bayesian Nonlinear Principal Component Analysis Using Random Fields,
PAMI(31), No. 4, April 2009, pp. 749-754.
IEEE DOI Link 0903
Efficient computation. PCA for digit recognition. BibRef

Cavalin, P.R.[Paulo R.], Sabourin, R.[Robert], Suen, C.Y.[Ching Y.], de Souza Britto, Jr., A.[Alceu],
Evaluation of incremental learning algorithms for HMM in the recognition of alphanumeric characters,
PR(42), No. 12, December 2009, pp. 3241-3253.
Elsevier DOI Link 0909
Incremental learning; Hidden Markov models; Ensembles of classifiers; Handwriting recognition; Isolated digits; Uppercase letters See also Leave-One-Out-Training and Leave-One-Out-Testing Hidden Markov Models for a Handwritten Numeral Recognizer: The Implications of a Single Classifier and Multiple Classifications. BibRef

Hamidi, M.[Mandana], Borji, A.[Ali],
Invariance analysis of modified C2 features: case study: Handwritten digit recognition,
MVA(21), No. 6, October 2010, pp. 969-979.
WWW Version. 1011

He, C.L.[Chun Lei], Lam, L.[Louisa], Suen, C.Y.[Ching Y.],
Rejection measurement based on linear discriminant analysis for document recognition,
IJDAR(14), No. 3, September 2011, pp. 263-272.
WWW Version. 1109
A Novel Rejection Measurement in Handwritten Numeral Recognition Based on Linear Discriminant Analysis,
IEEE DOI Link 0907

He, C.L.[Chun Lei], Lam, L.[Louisa], Suen, C.Y.[Ching Y.],
Automatic Discrimination between Confusing Classes with Writing Styles Verification in Arabic Handwritten Numeral Recognition,
IEEE DOI Link 1008

He, C.L.[Chun Lei], Suen, C.Y.[Ching Y.],
Error Reduction Based on Error Categorization in Arabic Handwritten Numeral Recognition,
IEEE DOI Link 1011

Niu, X.X.[Xiao-Xiao], Suen, C.Y.[Ching Y.],
A novel hybrid CNN-SVM classifier for recognizing handwritten digits,
PR(45), No. 4, April 2012, pp. 1318-1325.
Elsevier DOI Link 1112
Hybrid model; Convolutional Neural Network; Support Vector Machine; Handwritten digit recognition BibRef

Deselaers, T.[Thomas], Gass, T.[Tobias], Heigold, G.[Georg], Ney, H.[Hermann],
Latent Log-Linear Models for Handwritten Digit Classification,
PAMI(34), No. 6, June 2012, pp. 1105-1117.
IEEE DOI Link 1205
Earlier: A2, A1, A4, Only:
Deformation-Aware Log-Linear Models,
Springer DOI Link 0909
Exented log-linear model with latent variables. Image deformation aware models. BibRef

Bernard, S.[Simon], Adam, S.[Sébastien], Heutte, L.[Laurent],
Dynamic Random Forests,
PRL(33), No. 12, 1 September 2012, pp. 1580-1586.
Elsevier DOI Link 1208
Using Random Forests for Handwritten Digit Recognition,
IEEE DOI Link 0709
Random forests; Ensemble of classifiers; Random feature selection; Dynamic induction BibRef

Pirlo, G.[Giuseppe], Impedovo, S.[Sebastiano],
Adaptive Membership Functions for Handwritten Character Recognition by Voronoi-Based Image Zoning,
IP(21), No. 9, September 2012, pp. 3827-3837.
IEEE DOI Link 1208
Earlier: A2, A1:
Tuning between Exponential Functions and Zones for Membership Functions Selection in Voronoi-Based Zoning for Handwritten Character Recognition,
IEEE DOI Link 1111

Impedovo, S.[Sebastiano], Pirlo, G.[Giuseppe], Modugno, R.[Raffaele],
New Advancements in Zoning-Based Recognition of Handwritten Characters,
IEEE DOI Link 1302

Impedovo, S.[Sebastiano], Modugno, R.[Raffaele], Pirlo, G.[Giuseppe],
Analysis of Membership Functions for Voronoi-Based Classification,
IEEE DOI Link 1011
Membership Functions for Zoning-Based Recognition of Handwritten Digits,
IEEE DOI Link 1008

Berthiaume, V.[Vincent], Cheriet, M.[Mohamed],
Handwritten Digit Recognition by Fourier-Packet Descriptors,
ELCVIA(11), No. 1, 2012, pp. xx-yy.
WWW Version. 1212

Salimi, H.[Hamid], Giveki, D.[Davar],
Farsi/Arabic handwritten digit recognition based on ensemble of SVD classifiers and reliable multi-phase PSO combination rule,
IJDAR(16), No. 4, December 2013, pp. 371-386.
WWW Version. 1312

Ghifary, M., Kleijn, W.B., Zhang, M.J.[Meng-Jie],
Sparse representations in deep learning for noise-robust digit classification,
IEEE DOI Link 1402
Boltzmann machines BibRef

Impedovo, S., Mangini, F.M., Pirlo, G., Barbuzzi, D., Impedovo, D.,
Voronoi Tessellation for Effective and Efficient Handwritten Digit Classification,
IEEE DOI Link 1312
computational geometry BibRef

Diem, M., Fiel, S., Garz, A., Keglevic, M., Kleber, F., Sablatnig, R.,
ICDAR 2013 Competition on Handwritten Digit Recognition (HDRC 2013),
IEEE DOI Link 1312
handwritten character recognition BibRef

Azzopardi, G.[George], Petkov, N.[Nicolai],
A Shape Descriptor Based on Trainable COSFIRE Filters for the Recognition of Handwritten Digits,
Springer DOI Link 1311

Le, H.M.[Hieu M.], Duong, A.T.[An T.], Tran, S.T.[Son T.],
Multiple-Classifier Fusion Using Spatial Features for Partially Occluded Handwritten Digit Recognition,
Springer DOI Link 1307

Sermanet, P.[Pierre], Chintala, S.[Soumith], LeCun, Y.[Yann],
Convolutional neural networks applied to house numbers digit classification,
WWW Version. 1302

Yu, X.G.[Xin-Guo],
Localization and extraction of the four clock-digits using the knowledge of the digital video clock,
WWW Version. 1302
Not handwritten BibRef

Wu, C.P.[Chun-Peng], Fan, W.[Wei], He, Y.[Yuan], Sun, J.[Jun], Naoi, S.[Satoshi],
Cascaded heterogeneous convolutional neural networks for handwritten digit recognition,
WWW Version. 1302

Barbuzzi, D.[Donato], Impedovo, D.[Donato],
Learning Iterative Strategies in Multi-Expert Systems Using SVMs for Digit Recognition,
Springer DOI Link 1311

Barbuzzi, D.[Donato], Impedovo, D.[Donato], Pirlo, G.,
Benchmarking of Update Learning Strategies on Digit Classifier Systems,
IEEE DOI Link 1302

Impedovo, S., Mangini, F.M.,
A Novel Technique for Handwritten Digit Classification Using Genetic Clustering,
IEEE DOI Link 1302

Abbas, N.[Nassim], Chibani, Y.[Youcef], Nemmour, H.[Hassiba],
Handwritten Digit Recognition Based on a DSmT-SVM Parallel Combination,
IEEE DOI Link 1302

Azeem, S.A.[Sherif Abdel], El Meseery, M.[Maha], Ahmed, H.[Hany],
Online Arabic Handwritten Digits Recognition,
IEEE DOI Link 1302

Bull, G., Gao, J.B.[Jun-Bin],
Classification of Hand-Written Digits Using Chordiograms,
IEEE DOI Link 1205

Wang, Z.[Zhe], Huang, Y.P.[Ya-Ping], Luo, S.W.[Si-Wei], Wang, L.[Liang],
A biologically inspired system for fast handwritten digit recognition,
IEEE DOI Link 1201

de Santana Pereira, C.[Cristiano], Cavalcanti, G.D.C.[George D.C.],
Handwritten connected digits detection: An approach using instance selection,
IEEE DOI Link 1201

Li, P.[Peng], Li, R.[Rui],
The research on arabic numeral symbol's use in poster design,
IEEE DOI Link 1112
Not recognition, but history. BibRef

Gimenez, A.[Adria], Andres-Ferrer, J., Juan, A.[Alfons], Serrano, N.[Nicolás],
Discriminative Bernoulli Mixture Models for Handwritten Digit Recognition,
IEEE DOI Link 1111

Mizukami, Y.[Yoshiki], Tadamura, K.[Katsumi], Warrell, J.[Jonathan], Li, P.[Peng], Prince, S.J.D.[Simon J.D.],
CUDA Implementation of Deformable Pattern Recognition and its Application to MNIST Handwritten Digit Database,
IEEE DOI Link 1008

Lawal, I.A.[Isah A.], Abdel-Aal, R.E.[Radwan E.], Mahmoud, S.A.[Sabri A.],
Recognition of Handwritten Arabic (Indian) Numerals Using Freeman's Chain Codes and Abductive Network Classifiers,
IEEE DOI Link 1008

Bulacu, M.[Marius], Brink, A.A.[Axel A.], van der Zant, T.[Tijn], Schomaker, L.R.B.[Lambert R.B.],
Recognition of Handwritten Numerical Fields in a Large Single-Writer Historical Collection,
IEEE DOI Link 0907

Seijas, L.M.[Leticia M.], Segura, E.C.[Enrique C.],
A Wavelet-Based Descriptor for Handwritten Numeral Classification,
IEEE DOI Link 1302
Detection of Ambiguous Patterns Using SVMs: Application to Handwritten Numeral Recognition,
Springer DOI Link 0909

Romero, D.[Diego], Ruedin, A.[Ana], Seijas, L.[Leticia],
Wavelet-Based Feature Extraction for Handwritten Numerals,
Springer DOI Link 0909

Alamri, H.[Huda], He, C.L.[Chun Lei], Suen, C.Y.[Ching Y.],
A New Approach for Segmentation and Recognition of Arabic Handwritten Touching Numeral Pairs,
Springer DOI Link 0909

Yu, X.G.[Xin-Guo], Li, Y.Q.[Yi-Qun], Lee, W.S.[Wei San],
Robust time recognition of video clock based on digit transition detection and digit-sequence recognition,
IEEE DOI Link 0812

López-Leyva, L.O.[Luis Octavio], Yáńez-Márquez, C.[Cornelio], Flores-Carapia, R.[Rolando], Camacho-Nieto, O.[Oscar],
Handwritten Digit Classification Based on Alpha-Beta Associative Model,
Springer DOI Link 0809

Yektaii, M.[Mahdi], Bhattacharya, P.[Prabir],
Cumulative Global Distance for Dimension Reduction in Handwritten Digits Database,
Springer DOI Link 0706

Huang, K.Z.[Kai-Zhu], Sun, J.[Jun], Hotta, Y.[Yoshinobu], Fujimoto, K.[Katsuhito], Naoi, S.[Satoshi],
An SVM-Based High-accurate Recognition Approach for Handwritten Numerals by Using Difference Features,
IEEE DOI Link 0709

Chen, X.F.[Xue-Feng], Liu, X.B.[Xia-Bi], Jia, Y.D.[Yun-De],
Unsupervised Selection and Discriminative Estimation of Orthogonal Gaussian Mixture Models for Handwritten Digit Recognition,
IEEE DOI Link 0907
Learning Handwritten Digit Recognition by the Max-Min Posterior Pseudo-Probabilities Method,
IEEE DOI Link 0709

Hotta, S.,
Transform-Invariance in Local Averaging Classifier for Handwritten Digit Pattern Recognition,
IEEE DOI Link 0709

Zheng, L.H.[Li-Hong], He, X.J.[Xiang-Jian], Wu, Q.A.[Qi-Ang], Hintz, T.,
Learning-Based Number Recognition on Spiral Architecture,
IEEE DOI Link 0612

Zhang, X.L.[Xiao-Li], Nagy, G.[George],
Style Quantification of Scanned Multi-source Digits,
ICPR06(II: 1018-10121).
IEEE DOI Link 0609

Duong, J., Emptoz, H.,
Cascade classifier: design and application to digit recognition,
ICDAR05(II: 1065-1069).
IEEE DOI Link 0508

Cecotti, H., Belaid, A.,
Rejection strategy for convolutional neural network by adaptive topology applied to handwritten digits recognition,
ICDAR05(II: 765-769).
IEEE DOI Link 0508
See also Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces. BibRef

Fan, X.D.[Xiao-Dong],
Efficient Multiclass Object Detection by a Hierarchy of Classifiers,
CVPR05(I: 716-723).
IEEE DOI Link 0507
Rather than multiple classifiers, 1 per object class, a hierarchical approach. Detection of digits. BibRef

Ng, G.S., Murali, T., Wahab, A., Sriskanthan, N.,
Classification of handwritten digits using evolving fuzzy neural network,
ICARCV04(II: 1410-1415).
IEEE DOI Link 0412

Miller, E.G.[Erik G.], Chef d'hotel, C.[Christophe],
Practical non-parametric density estimation on a transformation group for vision,
CVPR03(II: 114-121).
IEEE Abstract. 0307
propose a suitable invariant estimator on the linear group of non-singular matrices with positive determinant. Apply to digit recognition. BibRef

Yamaguchi, T., Nakano, Y., Maruyama, M., Miyao, H., Hananoi, T.,
Digit classification on signboards for telephone number recognition,
IEEE Abstract. 0311

Valveny, E., Lopez, A.,
Numeral recognition for quality control of surgical sachets,
IEEE Abstract. 0311

Muramatsu, H., Kobayashi, T., Sugiyama, T., Abe, K.,
Improvement of matching and evaluation in handwritten numeral recognition using flexible standard patterns,
IEEE Abstract. 0311

Kobayashi, T., Nakamura, K., Muramatsu, H., Sugiyama, T., Abe, K.,
Handwritten numeral recognition using flexible matching based on learning of stroke statistics,
IEEE DOI Link 0109

Takahashi, K., Nishiwaki, D.,
A class-modular GLVQ ensemble with outlier learning for handwritten digit recognition,
IEEE Abstract. 0311

Srihari, S.N., Tomai, C.I., Zhang, B.[Bin], Lee, S.J.[Sang-Jik],
Individuality of numerals,
IEEE Abstract. 0311

de Avila, S.[Sandra], Matos, L.[Leonardo], Freitas, C.[Cinthia], de Carvalho, J.M.[Joăo M.],
Evaluating a Zoning Mechanism and Class-Modular Architecture for Handwritten Characters Recognition,
Springer DOI Link 0711

Correia, S.E.N., de Carvalho, J.M., Sabourin, R.,
On the performance of wavelets for handwritten numerals recognition,
ICPR02(III: 127-130).
IEEE DOI Link 0211

Kim, K.K.[Kye Kyung], Chung, Y.K.[Yun Koo], Suen, C.Y.,
Post-processing scheme for improving recognition performance of touching handwritten numeral strings,
ICPR02(III: 327-330).
IEEE DOI Link 0211

de Souza Britto, Jr., A.[Alceu], Sabourin, R., Bortolozzi, F., Suen, C.Y.,
A string length predictor to control the level building of HMMs for handwritten numeral recognition,
ICPR02(IV: 31-34).
IEEE DOI Link 0211

Soares de Oliveira, L.E., Lethelier, E., Bortolozzi, F., Sabourin, R.,
A New Segmentation Approach for Handwritten Digits,
ICPR00(Vol II: 323-326).
IEEE DOI Link 0009

Ayat, N.E., Cheriet, M., Suen, C.Y.,
KMOD: A two-parameter SVM kernel for pattern recognition,
ICPR02(III: 331-334).
IEEE DOI Link 0211
Empirical error based optimization of SVM kernels: Application to digit image recognition,
IEEE Top Reference. 0209

Zhang, R.[Rui], Ding, X.Q.[Xiao-Qing],
Offline Handwritten Numeral Recognition Using Orthogonal Gaussian Mixture Model,
ICIP01(I: 1126-1129).
IEEE DOI Link 0108

Zhang, R.[Rui], Ding, X.Q.[Xiao-Qing], Zhang, J.Y.[Jia-Yong],
Offline handwritten character recognition based on discriminative training of orthogonal Gaussian mixture model,
IEEE DOI Link 0109

Ratzlaff, E.H.,
A scanning n-tuple classifier for online recognition of handwritten digits,
IEEE DOI Link 0109

Ye, X.Y.[Xiang-Yun], Cheriet, M., Suen, C.Y.,
A framework of combining numeric string recognizers,
IEEE DOI Link 0109

Ayat, N.E., Cheriet, M., Remaki, L., Suen, C.Y.,
KMOD: a new support vector machine kernel with moderate decreasing for pattern recognition. Application to digit image recognition,
IEEE DOI Link 0109

Singh, S., Hewitt, M.,
Cursive Digit and Character Recognition on Cedar Database,
ICPR00(Vol II: 569-572).
IEEE DOI Link 0009

Zhao, B., Liu, Y., Xia, S.W.,
Support Vector Machine and Its Application in Handwritten Numeral Recognition,
ICPR00(Vol II: 720-723).
IEEE DOI Link 0009

Grim, J.[Jiri], Pudil, P., Somol, P.[Petr],
Multivariate Structural Bernoulli Mixtures for Recognition of Handwritten Numerals,
ICPR00(Vol II: 585-589).
IEEE DOI Link 0009

Ping, Z.[Zhang], Lihui, C.[Chen], Kot, A.C.,
A Floating Feature Detector for Handwritten Numeral Recognition,
ICPR00(Vol II: 553-556).
IEEE DOI Link 0009

Nóbrega-Correia, S.E.N., de Carvalho, J.M.[J. Marques],
Optimizing the Recognition Rates of Unconstrained Handwritten Numerals Using Biorthogonal Spline Wavelets,
ICPR00(Vol II: 251-254).
IEEE DOI Link 0009

Mizukami, Y., Sato, T., Tanaka, K.,
Handwritten Digit Recognition by Hierarchical Displacement Extraction with Gradual Prototype Elimination,
ICPR00(Vol II: 339-342).
IEEE DOI Link 0009

Yu, D.,
Analysis and Reconstruction of Broken Handwritten Digits,
ICIP00(Vol II: 700-703).
IEEE DOI Link 0008

Teredesai, A., Govindaraju, V.,
Active digit classifiers: a separability optimization approach to emulate cognition,
IEEE DOI Link 0109

Yoon, S.S.[Sung-Soo], Kim, G.H.[Gyeong-Hwan], Choi, Y.W.[Yeong-Woo], Lee, Y.B.[Yill-Byung],
New paradigm for segmentation and recognition of handwritten numeral string,
IEEE DOI Link 0109

Park, J.[Jaehwa], Govindaraju, V.[Venu],
Active Character Recognition using A*-like Algorithm,
CVPR00(II: 82-87).
IEEE DOI Link 0005

de Coste, D.[Dennis], Burl, M.C.[Michael C.],
Distortion-Invariant Recognition via Jittered Queries,
CVPR00(I: 732-737).
IEEE DOI Link 0005

Plamondon, R.[Rejean], Parizeau, M.[Marc], Li, X.L.[Xiao-Lin],
Model-Based On-Line Handwritten Digit Recognition,
ICPR98(Vol II: 1134-1136).
IEEE DOI Link 9808

Muller, N.[Neil], Herbst, B.M.[Ben M.],
The Use of Eigenpictures for Optical Character Recognition,
ICPR98(Vol II: 1124-1126).
IEEE DOI Link 9808
See also Building a Representative Training Set Based on Eigenimages. BibRef

Naoi, S., Yabuki, M.,
Global Interpolation Method II for Handwritten Numbers Overlapping a Border by Automatic Knowledge Acquisition of Overlapped Conditions,
IEEE DOI Link 9708

Naoi, S., Hotta, Y., Yabuki, M., Asakawa, A.,
Global interpolation in the segmentation of handwritten characters overlapping a border,
ICIP94(I: 149-153).
IEEE DOI Link 9411

Zhou, J., Suen, C.Y.,
Unconstrained numeral pair recognition using enhanced error correcting output coding: a holistic approach,
ICDAR05(I: 484-488).
IEEE DOI Link 0508

Zhou, J., Gan, Q., Suen, C.Y.,
A High Performance Hand-Printed Numeral Recognition System with Verification Module,
IEEE DOI Link 9708

Shi, Z., Srihari, S.N., Shin, Y.C., Ramanaprasad, V.,
A System for Segmentation and Recognition of Totally Unconstrained Handwritten Numeral Strings,
IEEE DOI Link 9708

Yamauchi, T., Itamoto, Y., Tsukumo, J.,
Shape Based Learning for a Multi-Template Method, and Its Application to Handprinted Numeral Recognition,
IEEE DOI Link 9708

Zhao, B., Su, H., Xia, S.W.,
A New Method For Segmenting Unconstrained Handwritten Numeral String,
IEEE DOI Link 9708

Kim, W., Paik, J., Lee, K., Lee, Y.,
Handwritten Digit Verifier for Improving Recognition Error,
ICDAR97(Tu-3A) 9708
In program, not in proceedings. BibRef

Plamondon, R., Bourdeau, M.,
Validation of Preprocessing Algorithms: A Methodology and Its Application to the Design of a Thinning Algorithm for Handwritten Characters,
ICDAR93(262-269). BibRef 9300

Hotta, Y., Takebe, H., Suwa, M., Naoi, S.,
Accuracy improvement for handwritten Japanese word recognition by combination of character and word recognizer,
ICDAR05(II: 685-689).
IEEE DOI Link 0508

Hotta, Y., Naoi, S., and Suwa, M.,
Handwritten Numeral Recognition Using Personal Handwriting Characteristics Based on Clustering Method,
IEEE Abstract. 9609

Kawatani, T., Shimizu, H., McEachern, M.,
Handwritten Numeral Recognition with the Improved LDA Method,
ICPR96(IV: 441-446).
IEEE DOI Link 9608
(Hewlett-Packard Lab. Japan, J) BibRef

Shirali-Shahreza, M.H., Faez, K., Khotanzad, A.,
Recognition of handwritten Persian/Arabic numerals by shadow coding and an edited probabilistic neural network,
ICIP95(III: 436-439).
IEEE DOI Link 9510

Pan, F.[Feng], Keane, M.,
A new set of moment invariants for handwritten numeral recognition,
ICIP94(I: 154-158).
IEEE DOI Link 9411

Bertille, J.M.,
An Elastic Matching Approach Applied to Digit Recognition,
ICDAR93(82-85). BibRef 9300

Fontaine, T., and Shastri, L.,
Handprinted Digit Recognition Using Spatiotemporal Connectionist Models,
IEEE Abstract. Error rate of 1% with 14.6% rejected. BibRef 9200

Li, X.P.[Xue-Ping],
Recognition of connected numeral strings using partial boundary features,
IEEE DOI Link 9208

Kovacs-Vajna, Z.M., Guerrieri, R., Baccarani, G.,
A novel metric for nearest-neighbor classification of hand-written digits,
IEEE DOI Link 9208

Schaeken, B., Verschueren, W., Rene de Cotret, Y., Hermanne, A.,
A Hierarchical System for Handwritten Numeral Recognition,
ICPR84(623-625). BibRef 8400

Verschueren, W., Schaeken, B., Rene de Cotret, Y., Hermanne, A.,
Structural Recognition of Handwritten Numerals,
ICPR84(760-762). BibRef 8400

Tang, G.Y., Tzeng, P.S., Hau, C.C.,
A Microcomputer System to Recognize Handwritten Numerals Using a Syntactic-Statistic Approach,
ICPR84(1061-1064). BibRef 8400

Chapter on OCR, Document Analysis and Character Recognition Systems continues in
Multiple Classifiers Applied to Arabic Numbers .

Last update:Apr 12, 2014 at 21:44:02