Goal: Build 3D reconstruction of video sequences shot by a moving camera, including both static background and moving objects.

Scenario: Multiple objects move rigidly on a ground plane, observed by a moving camera (rotation+translation).

1. Motion Segmentation
 - Extraction and matching of feature points
 - Estimation of inter-frame homographies
 - Identification of motion blobs
 - Removal of parallax pixels

2. Reconstruction of Static Background
 - Homography-based self-calibration
 - Ground plane position: \(\mathbf{N} \cdot \mathbf{P} = d \)
 - 3D point triangulation
 - Bundle Adjustment

3. Reconstruction of Moving Objects
 - Object shape inference
 (Real) moving camera + moving object \(\Rightarrow \) (Virtual) moving camera + static object
 - Ground-plane assumption: every object must lie and move on the ground plane
 - Object scale estimation
 - At least one object point is on or close to the ground plane: \(\mathbf{N} \cdot (\mathbf{sP}) = d \)
 - Object motion estimation
 - Rotation can be solved uniquely: \(\mathbf{R}_i^c = (\mathbf{R}_i^v)^{-1} \mathbf{R}_i^c \)
 - Translation needs more constraints: \(\mathbf{N}(\mathbf{T}_i^c - \mathbf{T}_{i+1}^c) = 0 \)

Summary
- A practical system for building consistent 3D reconstruction of both static background and moving objects
- Object scale and motion estimation based on the ground plane
- Future work: more experimental evaluation; extension to dense reconstruction…